

GUÍAS LINEALES. ÍNDICE

S	IÓN GENERAL DEL PRODUCTO	3
F	ORMACIÓN GENERAL	4
	Propiedades y ventajas	4
	Principios de selección	5
	Capacidades de carga	6
	Cálculo de la vida útil	7
	Carga de trabajo	9
	Fricción y lubricación	11
	Posición de montaje	12
	Montaje	13
	Sistemas de juntas	17
	Tecnología SynchMotion™	19
	Guías lineales resistentes al calor	20

GUÍ	AS LINEALES	21
	Series HG y QH	21
	Series EG y QE	38
	Series CG	53
	Serie WE	67
	Serie MG	79
	Series RG y QR	90
ACC	EESORIOS	107
	Adaptadores de lubricación	107
	Inyectores de engrase y lubricantes HIWIN	113

VISIÓN GENERAL DEL PRODUCTO

GUÍAS LINEALES Y ACCESORIOS

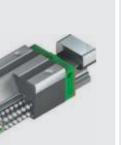
Una guía lineal permite el movimiento lineal con la ayuda de elementos rodantes. Mediante el uso de bolas o rodillos entre el raíl y el patín, una guía lineal puede alcanzar un movimiento lineal extremadamente preciso.

Comparado con una guía deslizante estándar, el coeficiente de fricción aquí es de sólo una quincuagésima parte. La buena eficiencia y el juego cero significan que la guía lineal se puede utilizar de varias maneras.

GUÍA LINEAL, SERIES HG Y QH • Guía de rodamiento de bolas por recirculación en 4 filas • Ángulo de contacto de 45° • Alta capacidad de carga en cualquier posición de montaje • Alta rigidez • Patín con tecnología SynchMotion™ (serie QH)

GUÍA LINEAL, SERIES EG Y QE

Pág. 38

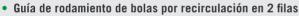

- Guía de rodamiento de bolas por recirculación en 4 filas
- Ángulo de contacto de 45°
- Alta capacidad de carga en cualquier posición de montaje
- Perfil bajo
- Patín con tecnología SynchMotion™ (serie QE)

GUÍA LINEAL, SERIES CG

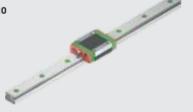
Pág. **53**

- Juego cero
- Intercambiable
- Alta precisión
- Alta capacidad de carga de par, especialmente en momento de rodadura Mx
- Cinta de recubrimiento opcional

GUÍA LINEAL, SERIE WE


Pág. **67**

- Guía de rodamiento de bolas por recirculación en 4 filas
- Ángulo de contacto de 45°
- · Capacidad elevada de momentos
- Perfil bajo



GUÍA LINEAL, SERIE MG

Pág. 7

- Ángulo de contacto de 45°
- Construcción compacta
- Diseños estrecho y ancho

GUÍAS LINEALES, SERIE RG Y QR

Pág. **90**

- Guía de rodamiento de rodillos por recirculación en 4 filas
- Ángulo de contacto de 45°
- Rodillo guía
- Capacidad de carga elevada
- Rigidez elevada
- Patín con tecnología SynchMotion™ (serie QR)

ACCESORIOS

Pág. 107

- Engrasador
- Adaptador de lubricación
- · Accesorios de presión

PROPIEDADES Y VENTAJAS

1 ALTA PRECISIÓN DE POSICIONAMIENTO

Un patín montado con una guía lineal sólo tiene que superar la resistencia a la rodadura. La diferencia entre la resistencia a la rodadura estática y dinámica es muy pequeña, por lo que el esfuerzo de arranque es sólo ligeramente mayor que la fuerza del movimiento. No se producen efectos de vibración (stick-slip).

2 LARGA VIDA ÚTIL Y MOVIMIENTO DE ALTA PRECISIÓN

Con una guía deslizante, los diferentes grosores de la película de lubricación pueden producir errores de precisión. La fricción de deslizamiento y el hecho de que la lubricación es a menudo insuficiente causan mucho desgaste, y por lo tanto, una disminución de la precisión. Por otra parte, la guía lineal tiene una resistencia a la rodadura muy baja junto con un desgaste extremadamente bajo. La precisión de la guía permanece prácticamente constante durante toda la vida útil.

3 ALTA VELOCIDAD Y BAJA FUERZA MOTRIZ

Los coeficientes de fricción bajos significan que sólo se necesitan fuerzas motrices bajas. La potencia requerida también permanece baja en la marcha atrás.

4 LA MISMA ALTA CAPACIDAD DE CARGA EN TODAS DIRECCIONES

Gracias a la guía reforzada inherente a su diseño, una guía lineal puede absorber fuerzas en dirección vertical y horizontal.

5 INSTALACIÓN SENCILLA E INTERCAMBIABILIDAD

El montaje de una guía lineal es un proceso simple. Se obtiene un alto nivel de precisión en una superficie de montaje fresada o rectificada si se siguen las instrucciones de montaje. Las guías de deslizamiento estándar requieren un esfuerzo considerablemente mayor para montarlas, ya que las superficies de deslizamiento tienen que haber sido rectificadas. Los componentes individuales no se pueden intercambiar sin rectificar. Sin embargo, las guías lineales pueden intercambiarse fácilmente.

6 FÁCIL LUBRICACIÓN

Una lubricación insuficiente en las guías deslizantes destruye las superficies deslizantes. El lubricante debe utilizarse en un gran número de puntos en las superficies deslizantes. La guía lineal sólo requiere una lubricación mínima que es proporcionada por una línea de suministro simple al patín. HIWIN también puede suministrar patines con una unidad integrada de lubricación de aceite y un depósito de aceite intercambiable para una lubricación a largo plazo.

7 PROTECCIÓN CONTRA LA CORROSIÓN

Para conseguir una protección anticorrosiva óptima, los patines y los raíles se pueden suministrar con diferentes revestimientos. Los procedimientos individuales seleccionados dependen de la aplicación. Se requieren datos referentes a las condiciones ambientales y las sustancias corrosivas para poder elegir adecuadamente un revestimiento. Las guías lineales miniatura MG y MG-O se fabrican en acero inoxidable.

PRINCIPIOS DE SELECCIÓN DE LA GUÍA LINEAL

ESTABLECER LAS CONDICIONES DE LA SELECCIÓN

- Base de la máquina
- Espacio máx. de instalación
- Precisión deseada
- Rigidez requerida
- Tipo de carga

- Distancia a recorrer
- Velocidad, aceleración de desplazamiento
- Frecuencia de uso
- Vida útil
- Condiciones ambientales

SELECCIÓN DE LA SERIE

- Serie HG Rectificadoras, fresadoras y taladradoras, tornos, centros de mecanizado, madera
- Serie EG Tecnología de automatización, transporte de alta velocidad, equipos semiconductores, equipos de medición de precisión
- Serie WE Ejes simples con cargas MX de alto par
- Series MG / MG-O Tecnología miniatura, equipos semiconductores, tecnología médica
- Serie RG Centros de mecanizado, máquinas de moldeo por inyección, máquinas y sistemas de alta rigidez

SELECCIÓN DE LA CLASE DE PRECISIÓN

• Clases C, H, P, SP, UP según la precisión requerida.

DEFINIR EL TAMAÑO Y NÚMERO DE LOS PATINES

- Según valores empíricos
- Según el tipo de carga
- Si se usa un husillo de bolas, el tamaño nominal de los ejes lineales y del husillo debería ser aproximadamente el mismo, por ejemplo 32 el husillo y 35 el raíl

CALCULAR LA CARGA MÁXIMA DE LOS PATINES

Calcular la carga máxima utilizando los cálculos de muestra (véase la "Carga operativa").
 Asegúrese de que la seguridad estructural estática de la guía lineal seleccionada sea superior al valor correspondiente de la tabla sobre seguridad estructural estática.

DETERMINAR LA PRECARGA

• La precarga depende de los requisitos de rigidez y de la precisión de la superficie de montaje.

DETERMINAR LA RIGIDEZ

 Utilice la tabla de rigidez para calcular la deformación (δ) la rigidez aumenta con la precarga y a medida que la guía aumenta de tamaño.

CALCULAR LA VIDA ÚTIL

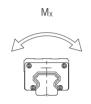
• Establecer la vida útil necesaria teniendo en cuenta la velocidad y la frecuencia del recorrido; trabajo base sobre los cálculos de muestra (véase "Cálculo de la vida útil").

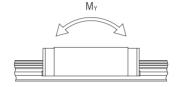
SELECCIÓN DEL TIPO DE LUBRICACIÓN

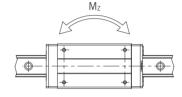
- Engrase mediante engrasador
- Aceite mediante línea de conexión

SELECCIÓN FINALIZADA

CAPACIDADES DE CARGA


CAPACIDAD DE CARGA ESTÁTICA Co


Si una guía lineal está sometida a cargas o impactos desproporcionadamente altos durante el movimiento o cuando está parada, se produce una deformación permanente local entre el patín y las bolas. Una vez que esta deformación permanente supera un determinado nivel, afecta a la facilidad con que se mueve la guía. Por definición, la capacidad de carga estática corresponde a una carga estática que produce una deformación permanente de 0,0001 × diámetro de la bola en el punto de contacto sometido a la mayor carga. Los valores se indican en las tablas para cada guía lineal. Estas tablas pueden utilizarse para seleccionar una guía lineal


adecuada. La carga estática máxima a la que se someta una guía lineal no debe exceder la capacidad de carga estática.

MOMENTO ESTÁTICO ADMISIBLE Mo

El momento estático admisible es el momento que corresponde a la mayor carga posible de piezas móviles por la capacidad de carga estática en una dirección y magnitud definidas. En los sistemas de movimiento lineal, el momento estático admisible se define en tres direcciones (MX, MY y MZ).

SEGURIDAD ESTRUCTURAL ESTÁTICA

La seguridad estructural estática, que depende de las condiciones ambientales y de funcionamiento, debe tenerse en cuenta para los sistemas de raíles en reposo o en movimiento lento. Un nivel superior de seguridad estructural es especialmente importante para las guías sometidas a cargas de impacto, véase Tabla 2.1. Se puede calcular la seguridad estructural estática utilizando F 2.1.

F 2.1

Seguridad estructural estática Factor de seguridad estática para carga de par

Capacidad de carga estática (N)

Momento estático admisible (Nm)

P Carga de trabajo estática equivalente (N)

M Momento estático equivalente (Nm)

Atención: La capacidad de carga de la guía lineal está limitada a menudo no por su resistencia a la carga, sino por la conexión del tornillo. Por lo tanto, recomendamos verificar la capacidad de carga máxima admisible de la conexión del tornillo según VDI 2230.

Tabla 2.1 SEGURIDAD ESTRUCTURAL ESTÁTICA

Carga	f _{SL} ; f _{SM} (mín.)
Carga normal	1,25 – 3,00
Con impacto y vibración	3,00 – 5,00

CAPACIDAD DE CARGA DINÁMICA Cdvn

La capacidad de carga dinámica es la carga definida (en dirección y magnitud) con la que una guía lineal alcanza una vida útil nominal de 50 km⁽¹⁾ de distancia recorrida (HG, QH, EG, QE, WE, MG, MG-O) o 100 km⁽¹⁾ (RG). En los gráficos de dimensiones se indica la capacidad de carga dinámica para cada. Puede usarse para calcular la vida útil de una guía concreta.

 C_{dyn} 50 km = 1.26 × C_{dyn} 100 km (serie HG, QH, EG, QE, WE, MG, MG-O) C_{dyn} 50 km = 1.23 × C_{dyn} 100 km (serie RG)

¹⁾ La capacidad de carga dinámica de las guías lineales se establece para una vida útil de 50 o 100 km de distancia recorrida según el fabricante. Pueden usarse los siguientes factores para convertir la capacidad de carga dinámica.

CÁLCULO DE LA VIDA ÚTIL

DEFINICIÓN DE VIDA ÚTIL

La carga continua y repetida de las trayectorias y las bolas sobre una guía lineal produce signos de fatiga en la superficie de la trayectoria. En última instancia, esto resulta en lo que se conoce como corrosión por picadura. La vida útil de una guía lineal se define como la distancia total recorrida cubierta hasta que empiecen a producirse picaduras en la superficie de la trayectoria o bolas.

VIDA ÚTIL NOMINAL (L)

La vida útil puede variar considerablemente incluso aunque las guías lineales se producen de la misma manera y se usan bajo las mismas condiciones de movimiento. Por lo tanto, la vida útil nominal debe considerarse como una estimación aproximada de la vida útil de una guía lineal. La vida útil nominal corresponde a la distancia total recorrida que el 90% de un grupo de guías lineales idénticas alcanzaron en las mismas condiciones sin fallar.

CÁLCULO DE LA VIDA ÚTIL NOMINAL

La carga real afecta a la vida útil nominal de una guía lineal. La vida útil nominal se puede calcular con las Fórmulas F 2.2 y F 2.3 utilizando la capacidad de carga dinámica seleccionada y la carga dinámica equivalente.

Fórmulas para calcular la vida nominal (L)

- Series HG, QH, EG, QE, WE, MG, MG-O:

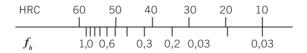
$$L = \left(\frac{C_{dyn}}{P}\right)^3 \times 50 \text{ km}$$

L Vida útil nominal (km)

C_{dyn} Capacidad de carga dinámica (N)

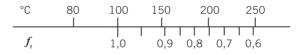
P Carga dinámica equivalente (N)

- Series RG, QR:


$$L = \left(\frac{C_{dyn}}{P}\right)^{10/3} \times 100 \text{ km}$$

FACTORES QUE AFECTAN A LA VIDA ÚTIL NOMINAL

El tipo de carga, la dureza de la trayectoria y la temperatura de la guía tienen un impacto considerable sobre la vida útil nominal. Las fórmulas F 2.4 y F 2.5 muestran la relación entre estos factores.


Factor de dureza (f_h)

Las guías lineales tienen una dureza de 58 HRC. Se aplica un factor de dureza de 1,0. Si la dureza difiere de esta, hay que utilizar el factor de dureza mostrado a la derecha. Si no se alcanza la dureza indicada, se reduce la carga permitida. Si esto ocurre, las capacidades de carga dinámica y estática debe multiplicarse por el factor de dureza.

Factor de temperatura (f,)

Los raíles estándar se pueden utilizar en un **rango de temperatura ambiente de -10 a 80 °C**. A temperaturas ambiente de hasta 150 °C deben utilizarse guías lineales con tapa metálica (identificadas en el código de tipo por la adición "/SE"). Son posibles temperaturas ambiente intermitentes de hasta 180 °C. Sin embargo, para asegurarse le recomendamos ponerse en contacto con nuestro equipo de asistencia técnica. Si la temperatura de una guía lineal supera los 100 °C, se reducen la carga permitida y la vida útil. Por lo tanto, las capacidades de carga dinámica y estática deben multiplicarse por el factor de temperatura.

CÁLCULO DE LA VIDA ÚTIL

Factor de carga (fw)

La carga dinámica equivalente se multiplica por el factor de carga según la Tabla 2.2.

Esto tiene en cuenta los efectos externos sobre la vida útil del raíl que no se han introducido directamente en los cálculos (por ejemplo, vibraciones, impactos y alta velocidad). Para aplicaciones de carrera corta (carrera <2 × longitud del patín), el factor de carga debe duplicarse.

Tabla 2.2 FACTOR DE CARGA

Tipo de carga	Velocidad de desplazamiento	f _w
Sin impacto y vibración	hasta 15 m/min	1,0 – 1,2
Carga normal	de 15 m/min hasta 60 m/min	1,2 – 1,5
Pocos impactos	de 60 m/min hasta 120 m/min	1,5 – 2,0
Con impactos y vibración	Superior a 120 m/min	2,0 – 3,5

Fórmula para calcular la vida útil nominal

(teniendo en cuenta los factores)

- Series HG, QH, EG, QE, WE, MG, MG-O:

F 2.4

$$L = \left(\frac{f_h f \times_t C \times_{dyn}}{f_w \times P}\right)^3 \times 50 \text{ km}$$

- Series RG, QR:

F 2.5

$$L = \left(\frac{f_h f \times_t C \times_{dyn}}{f_w \times P}\right)^{10/3} \times 100 \text{ km}$$

Vida útil nominal (km)
Factor de dureza

C_{dyn} Capacidad de carga dinámica (N)

Factor de temperatura

P Carga dinámica equivalente (N)

F_w Factor de carga

CÁLCULO DE LA VIDA ÚTIL (LH)

La velocidad de recorrido y la frecuencia de movimiento se usan para calcular la vida útil en horas a partir de la vida útil nominal.

Fórmula para calcular la vida útil (Lh)

- Series HG, QH, EG, QE, WE, MG, MG-O:

$$L_{h} = \frac{L}{v \times 60} = \frac{\left(\frac{C_{dyn}}{P}\right)^{3} \times 50.000}{v \times 60}$$

L_h Vida útil (h)

. Vida útil nominal (m)

Velocidad (m/min)

 C_{dyn}/P Proporción entre capacidad de carga y carga

- Series RG, QR:

F 2.7

$$L_h = \frac{L}{v \times 60} = \frac{\left(\frac{C_{dyn}}{P}\right)^{10/3} \times 100.000}{v \times 60}$$

CARGA DE TRABAJO

Cuando se calculan las cargas que actúan sobre una guía lineal, hay que tener en cuenta varios factores, por ej. el centro de gravedad de la carga, el punto de entrada de la fuerza del movimiento y la inercia de la masa al inicio y al final del movimiento. Para obtener un valor correcto hay que tener en cuenta cada parámetro

Carga sobre un patín

Tabla 2.3 **CARGA SOBRE UN PATÍN** (ejemplos de cálculo de la carga sobre un patín)

Ejemplos típicos	Distribución de la carga	Carga sobre un patín
P_{1} P_{2} P_{4}	F F F C/2c/2 C d/2 d/2 d/2	$P_{1} = \frac{W}{4} + \frac{F}{4} + \frac{F \times a}{2c} + \frac{F \times b}{2d}$ $P_{2} = \frac{W}{4} + \frac{F}{4} + \frac{F \times a}{2c} + \frac{F \times b}{2d}$ $P_{3} = \frac{W}{4} + \frac{F}{4} + \frac{F \times a}{2c} + \frac{F \times b}{2d}$ $P_{4} = \frac{W}{4} + \frac{F}{4} + \frac{F \times a}{2c} + \frac{F \times b}{2d}$
P ₃ P ₄ P ₂ P ₂ P ₄	F F F W	$P_1 = P_3 = \frac{W}{4} - \frac{F \times I}{2d}$ $P_2 = P_4 = \frac{W}{4} + \frac{F \times I}{2d}$
P ₂ P ₄ F P ₃	F W 7/P Z/P Z/P Z/P Z/P Z/P Z/P Z/P Z/P Z/P Z	$P_1 = P_2 = P_3 = P_4 = -\frac{W \times h}{2d} + \frac{F \times l}{2d}$
P ₁ P ₁₁ F P ₂ P ₁₂ P ₁₃ P ₄ P ₁₄	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P_{1} \dots P_{4} = \frac{W \times h}{2c} + \frac{F \times l}{2c}$ $P_{t1} = P_{t3} = \frac{W}{4} + \frac{F}{4} + \frac{F \times k}{2d}$ $P_{t2} = P_{t4} = \frac{W}{4} + \frac{F}{4} + \frac{F \times k}{2d}$

P₁...P₄ Carga sobre el patín individual

W Peso de la carga

F Fuerza del movimiento; otras fuerzas derivadas

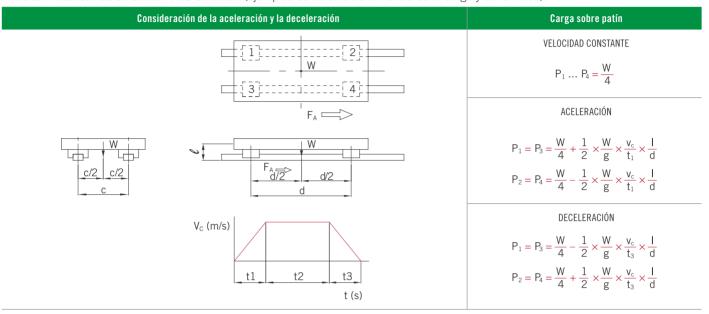
F_A Fuerza de reacción

Distancia desde fuerza externa hasta transporte

c Espaciado del raíl

d Espaciado del patín

a, b, k Distancia desde fuerza externa hasta el centro geométrico


b Distancia desde el centro de gravedad hasta el driver

CARGA DE TRABAJO

Inercia de la carga y de la masa

Tabla 2.4 INERCIA DE LA CARGA Y DE LA MASA (ejemplos de cálculo de la inercia de la carga y de la masa)

P₁...P₄ Carga sobre el patín individual

W Peso de la carga

F Fuerza del movimiento

F_A Fuerza de reacción

Ig Aceleración gravitacional (m/s2)

V_c Velocidad (m/s)

- t₁ Tiempo de aceleración (s)
- t₂ Tiempo de velocidad constante (s)
- t₃ Tiempo de deceleración (s)
- c Espaciado del raíl (m)
- d Espaciado del patín (m)
- I Distancia desde el centro de gravedad hasta el transporte (m)

CÁLCULO DE LA CARGA EQUIVALENTE DURANTE CAMBIOS DE CARGA

Si la carga de una guía lineal fluctúa considerablemente, hay que utilizar una carga equivalente en el cálculo de la vida útil. La carga equivalente se define como la carga que causa el mismo desgaste en los rodamientos que las cargas cambiantes. Puede calcularse utilizando la Tabla 2.5

Tabla 2.5 EJEMPLOS DEL CÁLCULO DE LA EQUIVALENTE (Pm)

Cambio gradual	Cambio estable	Cambio sinusoidal		
P P ₁ P ₂ P _m P _m L ₁ L ₂ L _n L _n	P Pmax Pm	P		
$P_{m} = \sqrt[3]{\frac{1}{L} \left(P_{1}^{3} \times L_{1} + P_{2}^{3} \times L_{2} + + P_{n}^{3} \times L_{n} \right)}$	$P_m = \frac{1}{3} \left(P_{min} + 2 \times \right) P_{max}$	$P_{m} = 0.65 \times P_{max}$		

P_m Carga equivalente

P_n Carga cambiante

P_{min} Carga mínima

P_{max} Carga máxima

L Distancia total recorrida

Ln Distancia recorrida bajo carga Pn

FRICCIÓN Y LUBRICACIÓN

RESISTENCIA A LA FRICCIÓN

El uso de elementos rodantes en la guía lineal reduce principalmente la fricción del rodillo de los elementos rodantes. Esto hace que el coeficiente de fricción de las guías lineales sea muy bajo, hasta una quincuagésima parte del de las guías deslizantes tradicionales. Generalmente, el coeficiente de fricción es alrededor de 0,004 según la serie. Si la carga es sólo del 10% o menos de la capacidad de carga dinámica, la mayor parte de la resistencia de fricción es causada por el rascador y la grasa y la fricción entre los elementos rodantes. Si la carga de trabajo es superior al 10% de la capacidad de carga dinámica, la carga proporciona la mayor parte de la resistencia de fricción.

F 2.8

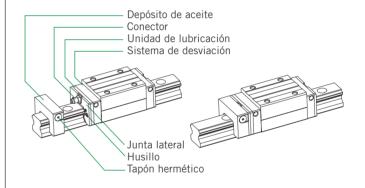
 $F = \mu \times W + S$

- F Fuerza de fricción (N)
- S Resistencia a la fricción (N)
- u Coeficiente de fricción
- W Carga (N)

LUBRICACIÓN

Como cualquier otro rodamiento antifricción, las guías lineales necesitan un suministro suficiente de lubricante. En principio, para lubricar pueden usarse tanto aceite como grasa. El lubricante es un elemento de diseño y debe tenerse en cuenta al diseñar una máquina. Los lubricantes reducen el desgaste, protegen contra la contaminación, reducen la corrosión y sus propiedades prolongan la vida útil. La suciedad puede acumularse sobre rieles sin protección. Esta suciedad debe eliminarse periódicamente.

HIWIN suministra grasas para varias exigencias:


- HIWIN G01: aplicaciones de alto rendimiento
- HIWIN G02: aplicaciones de sala estéril y vacío
- HIWIN GO3: aplicaciones de alta velocidad, sala estéril y vacío
- HIWIN G04: aplicaciones de alta velocidad
- HIWIN G05: aplicaciones estándar

Encontrará información sobre los lubricantes HIWIN en el capítulo de accesorios de la página 112. También encontrará información detallada sobre los lubricantes HIWIN y la lubricación de las guías lineales en las "Instrucciones de montaje HIWIN para guías lineales" disponibles en www.hiwin.de.

UNIDAD DE LUBRICACIÓN DE ACEITE E2

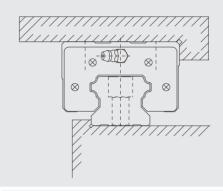
La unidad de lubricación de aceite E2 consta de una unidad de lubricación entre el sistema de desviación y la junta lateral, y un depósito de aceite intercambiable. No es necesario desmontar el patín para cambiar el depósito de aceite. La lubricación pasa desde el depósito de aceite a través del conector hasta la unidad de lubricación, que después lubrifica la trayectoria del raíl. Debido al diseño específico del depósito de aceite, el patín puede montarse en cualquier posición sin alterar el efecto de la lubricación. La unidad de lubricación de aceite E2 se puede utilizar a una temperatura ambiente de -10 °C a +60 °C. Los intervalos de cambio dependen en gran medida de las cargas y de las condiciones ambientales. Las influencias ambientales tales como altas cargas, vibraciones y suciedad reducen los intervalos de cambio.

La unidad de lubricación de aceite E2 está disponible para las series HG, EG y RG. Encontrará las dimensiones, los volúmenes de lubricante y los intervalos correspondientes en los capítulos para cada serie. Serie HG: pág. 33, serie EG: pág. 49, serie RG: pág. 101.

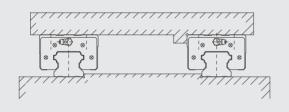
Aplicaciones

- Máquina herramienta
- Máquinas de producción, máquinas de moldeo por inyección, industria papelera, máquinas textiles, industria alimentaria, máquinas para carpintería
- Industria electrónica, industria de semiconductores, tecnología robótica, mesas cruzadas, máquinas de medición y pruebas
- Otras áreas, equipos médicos, automatización, manipulación industrial

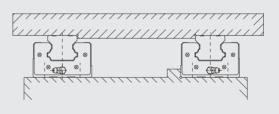
POSICIÓN DE MONTAJE

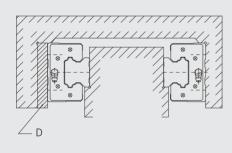

EJEMPLOS DE POSICIONES DE MONTAJE TÍPICAS

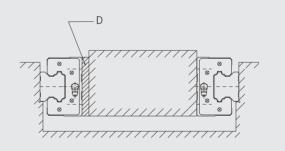
Una guía lineal puede absorber cargas desde arriba/abajo y desde derecha/izquierda. La posición de montaje depende de los requisitos de la máquina y de la dirección de carga. La precisión del raíl se define por la rectitud y la uniformidad de las superficies de instalación, ya que el raíl está unido a las mismas mientras se

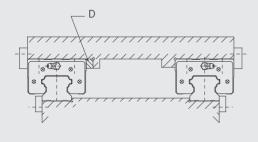

aprietan los tornillos. Las guía lineales que no están unidas a una superficie de instalación pueden tener mayores tolerancias en términos de rectitud. A continuación encontrará las situaciones de montaje típicas: los detalles de las tolerancias de montaje se encuentran en los capítulos de la serie correspondiente.

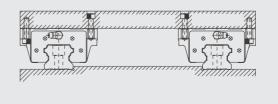
• Una guía lineal sobre un borde de referencia


El borde de referencia se identifica mediante flechas en la parte superior del raíl. Para raíles muy cortos, la identificación está en la parte delantera del raíl.


• Dos raíles con patín móvil


• Dos raíles con patín fijo

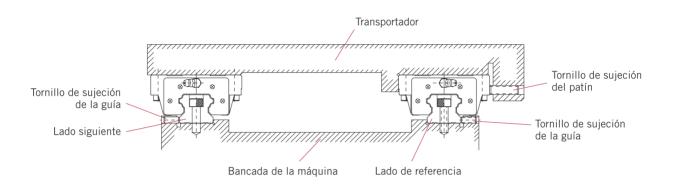

• Dos patines externos


Dos patines internos

• Configuración con superficie fija

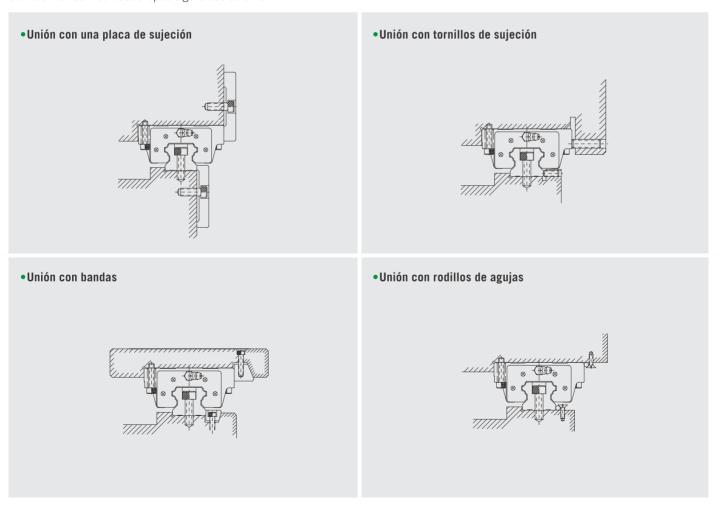
• Patín HGW..C con diferentes direcciones de montaje

D: Espaciador



MONTAJE

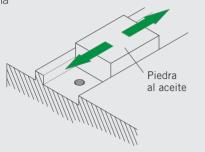
Según la precisión requerida y el impacto de la guía lineal y la carga de vibraciones, se recomiendan los tres tipos de montaje siguientes.


MONTAJE DE RAÍLES CON CARA DE REFERENCIA Y ABRAZADERA

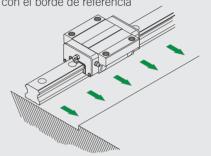
Si la máquina está sometida a vibraciones, impacto o fuerza lateral severas, las guías y los patines pueden moverse. Para evitar este problema y lograr un alto nivel de rigidez y precisión de dirección, recomendamos montar la guía lineal con cara de referencia y abrazaderas en ambos lados.

Tipos de unión

Se recomiendan los cuatro tipos siguientes de unión.

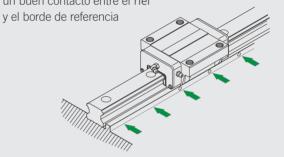


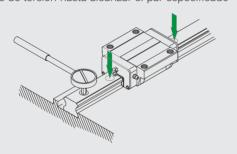
MONTAJE

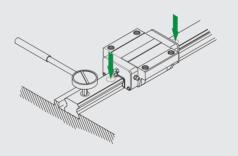

MONTAJE DE RAÍLES CON BORDE DE REFERENCIA Y ABRAZADERA

Unión de los raíles

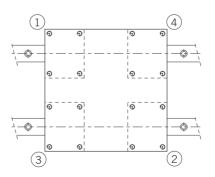
1) Antes de empezar, elimine toda la suciedad de la superficie de la máquina


2) Coloque cuidadosamente el raíl sobre la bancada, y alinéelo con el borde de referencia


3) Al alinear el riel sobre la bancada, asegúrese de que la rosca coincide con los agujeros de fijación


4) Atornille los tornillos uno tras otro por orden para asegurar un buen contacto entre el riel

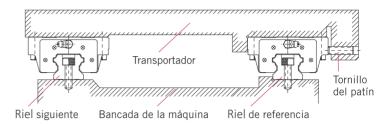
5) Atornille los tornillos de montaje del raíl en tres fases usando una llave de torsión hasta alcanzar el par especificado



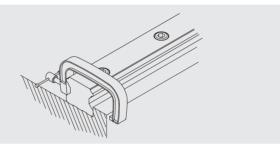
6) Monte el segundo raíl de la misma forma que el primero

Montaje de los patines

- Coloque cuidadosamente el transportador en el patín.
 Después apriete de forma provisional los tornillos de montaje del transportador
- Presione el patín contra el borde de referencia del transportador, y alinee el transportador atornillando los tornillos.
- Para montar uniformemente el transportador, apriete los tornillos de montaje sobre el borde de referencia, y el lado siguiente cuatro veces.

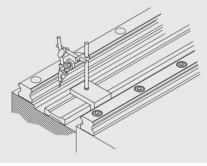


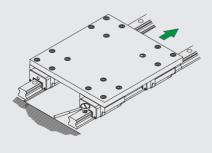
MONTAJE


MONTAJE DE RAÍLES CON BORDE DE REFERENCIA SIN ABRAZADERA

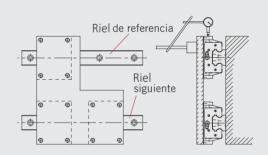
Para asegurarse de que los rieles de referencia y los siguientes estén paralelos cuando no se utilizan tornillos, recomendamos los siguientes métodos de montaje. El patín se instala tal como se describe más arriba.

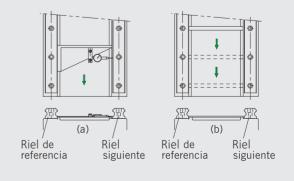
Montaje del raíl sobre el lado de referencia


Coloque la guía sobre la superficie de montaje de la bancada de la máquina. Apriete ligeramente los tornillos de montaje y después utilice un tornillo para presionar la guía contra el borde de referencia de la bancada de la máquina. A continuación, apriete los tornillos de montaje con el par especificado.


Montaje del raíl sobre el lado siguiente

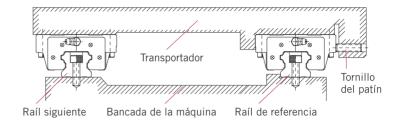
• ALINEACIÓN CON UN BORDE RECTO: Coloque el borde recto entre las guías y alinéelo en paralelo al borde de referencia en el lado de referencia usando una galga para cuadrantes. Una vez que la guía del lado siguiente esté alineada en paralelo al lado de referencia, apriete los tornillos de montaje trabajando desde un extremo de la guía al otro.

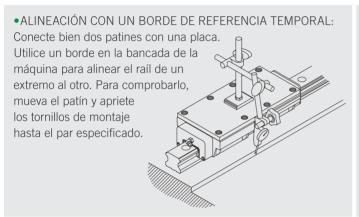



• ALINEACIÓN CON UN RAÍL DE REFERENCIA: Cuando el raíl de referencia esté correctamente instalado, encaje firmemente una placa sobre dos patines en el raíl de referencia, y uno de los dos patines en el siguiente raíl. Después, mueva la placa de un extremo de los raíles al otro, mientras aprieta los tornillos de montaje del siguiente raíl.

• CON UNA PLACA: Instale una placa sobre dos patines en el raíl de referencia. En el siguiente raíl, asegure un patín libremente sobre la placa. Después coloque una galga para cuadrantes en la placa y ponga la galga en contacto con el lado del patín siguiente del raíl. Después mueva la placa de un extremo a otro y alinee el siguiente raíl en paralelo al raíl de referencia. Apriete los tornillos de montaje.

• USO DE UNA GALGA: Use una galga especial para esta blecer la posición del raíl siguiente y apriete los tornillos de montaje hasta el par especificado.



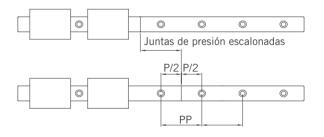

MONTAJF

MONTAJE DE RIELES SIN BORDE DE REFERENCIA Y SIN ABRAZADERA

Para asegurarse de que los raíles de referencia y siguiente estén paralelos, incluso aunque no haya un borde de referencia en el lado de referencia, recomendamos el siguiente tipo de montaje. Los patines se instalan como se ha descrito anteriormente.

Montaje del raíl sobre el lado de referencia

RAÍLES CONJUNTOS


Los rieles conjuntos (en varias partes) hay que montarlos según las marcas que llevan. Los conjuntos de cada sección se identifican en orden alfabético consecutivo, así como por el número de raíl/par, de manera que cada sección de raíl pueda ser claramente asignada.

	Sección 1			Sección 2		Sección 3
		Conju	ınto a	<u>Conj</u> u	nto b	
Raíl 1	A1	A2	А3	A4	A5	A6
Raíl 2	B1	B2	В3	B4	B5	В6

Cada conjunto está impreso en la parte superior del raíl. Esto ayuda en el montaje inicial y puede borrarse en cualquier momento utilizando un agente de limpieza adecuado (por ejemplo, alcohol metilado). Para los raíles de varias partes emparejados, debe indicarse la palabra "Paar" además del número del raíl.

Sección 1			Sección 2			Sección 3
	Conjui	nto a		Conju	ınto b	
A1	A2	А3		A4	A5	A6
B1	B2	В3		В4	B5	В6
C1	C2	C3		C4	C5	C6
D1	D2	D3		D4	D5	D6

En el montaje de varios raíles continuos, se recomienda intercalar las juntas.

PARES DE APRIETE PARA TORNILLOS DE MONTAJE

Un apriete insuficiente de los tornillos de montaje compromete en gran medida la precisión de la guía lineal; se recomiendan los siguientes pares de apriete para los tamaños de husillo correspondientes.

Tabla 2.6 PARES DE APRIETE DE TORNILLOS DE MONTAJE SEGÚN ISO 4762-12.9

Tamaño husillo	Par (Nm)	Tamaño tornillo	Par (Nm)				
M2	0,6	M8	30				
M3	2	M10	70				
M4	4	M12	120				
M5	9	M14	160				
M6	13	M16	200				

SISTEMAS DE JUNTAS

SISTEMAS DE JUNTAS SS, ZZ, DD, KK

Las juntas laterales HIWIN evitan en primer lugar la entrada de sustancias extrañas tales como partículas de polvo, astillas o líquido en las trayectorias de las bolas del patín, y en segundo lugar ahorra lubricante. HIWIN proporciona varios sistemas de juntas para las diversas condiciones ambientales de su aplicación. La eficacia de la junta lateral afecta directamente a la vida útil de la guía lineal y, por lo tanto, debe tenerse en cuenta en la fase de diseño y seleccionarse según con las condiciones ambientales de su aplicación.

SS (estándar): junta lateral con junta inferior

- Para aplicaciones con poca suciedad y polvo
- Mínimo aumento en fuerzas de desplazamiento.

ZZ: mínimo aumento en fuerzas de desplazamiento

- Para aplicaciones asociadas a viruta caliente o partículas de polvo afiladas
- El rascador protege la junta lateral y le evita daños.

DD: junta lateral doble con junta inferior

- Para aplicaciones asociadas con mucha suciedad y polvo
- La junta lateral doble evita de forma efectiva la entrada de suciedad al patín.

KK: junta lateral doble con junta inferior y rascador

- Para aplicaciones asociadas con mucha suciedad y polvo y viruta caliente o partículas de suciedad afiladas
- El rascador protege las juntas laterales y les evita daños.

Disponibilidad de los sistemas de juntas SS, ZZ, DD y KK:

Los sistemas de juntas SS, ZZ, DD y KK están disponibles para todas las series y tamaños. Las excepciones son las series MG y MG-O, para las que solo hay disponible el sistema de juntas estándar SS.

SISTEMAS DE JUNTAS

SISTEMAS DE JUNTAS SW Y ZWX PARA MAYOR PROTECCIÓN CONTRA LA SUCIEDAD

Los sistemas de juntas SW y ZWX permiten que las guías lineales HIWIN también se utilicen en áreas con niveles muy altos de suciedad. Los sistemas de juntas ofrecen una protección óptima contra la entrada de suciedad, polvo y líquido. La junta lateral es resistente a aceites y grasas, y muy resistente al desgaste.

Propiedades:

- Junta lateral con doble borde de cierre
- Junta inferior optimizada
- Junta superior adicional
- Rascador de acero inoxidable optimizado

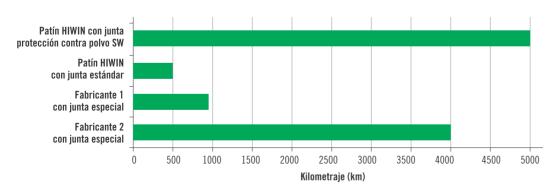
Ventajas:

- Óptima protección contra el polvo
- Vida útil multiplicada por diez
- Intervalos más largos de lubricación
- Menos costes de mantenimiento

SW: junta lateral con doble borde de cierre, junta inferior optimizada y junta superior adicional

- Óptima protección contra el polvo
- La junta superior adicional evita la entrada de suciedad por la parte superior del raíl

 La junta inferior optimizada evita la entrada de suciedad por el lado del raíl.


ZWX: junta lateral con doble borde de cierre, junta inferior optimizada, junta superior adicional y rascador optimizado

- Óptima protección contra el polvo
- La junta superior adicional evita la entrada de suciedad por la parte superior del raíl
- La junta inferior optimizada evita la entrada de suciedad por el lado del raíl
- El rascador optimizado también protege contra las partículas de suciedad > 0,2 mm de diámetro, y evita daños a la junta lateral.

Prueba de polvo para sistemas de juntas SW and ZWX

Pruebas exhaustivas de polvo han demostrado que la vida útil con los sistemas de juntas SW y ZWX es diez veces más larga que con una junta estándar en casos de altos niveles de polvo.

Condiciones de prueba:

- Sala sellada en la que se agita polvo de MDF
- v = 1,3 m/s
- Lubricación con grasa

Tabla 2.7 DISPONIBILIDAD DE SISTEMAS DE JUNTAS SW Y ZWX

Series				Tam	años			
361163	15	20	25	30	35	45	55	65
HG	×	• +	• +	• +	• +	• +	×■	×■
RG	-	-	-	-	-	×■	×■	× =

- Sistema de juntas SW
- ► Sistema de juntas ZWX
- × Sistema de juntas SW (sin junta superior y junta inferior optimizada)
- Sistema de juntas ZWX (sin junta superior y junta inferior optimizada)

TECNOLOGÍA SYNCHMOTION™

La innovadora tecnología SynchMotion™ reduce el contacto entre los elementos rodantes y con el patín. Al igual que la jaula de bolas de un rodamiento estándar, los elementos rodantes se mantienen a una distancia definida entre sí mediante la tecnología SynchMotion™. Por lo tanto, se evita la fricción recíproca, tal como se produce en las guías lineales estándar, y las fluctuaciones sincrónicas se reducen considerablemente. No se producen movimientos incontrolados de la bolas, incluso a altas velocidades. La tecnología SynchMotion™ también mejora el transporte de lubricante dentro del patín y el almacenamiento de lubricante.

Ventajas:

- Mejor rendimiento síncrono
- Optimizado para altas velocidades de desplazamiento
- Mejores propiedades lubricantes
- Menos ruido de funcionamiento
- Superiores capacidades de carga dinámica

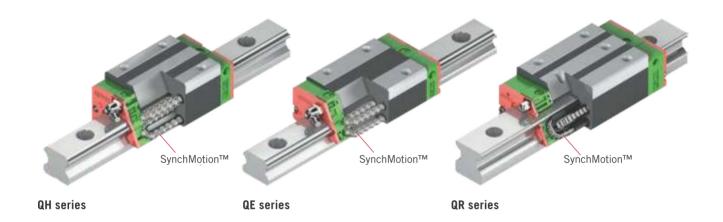


Tabla 2.8 **disponibilidad de la tecnología synchmotion™ para guías lineales hiwin**

Series	Tamaños								
361163	15	20	25	30	35	45	55	65	
QH	•	•	•	•	•	•	-	-	
QE	•	•	•	•	•	-	-	-	
QR	-	-	•	•	•	•	-	-	

Los transportadores con tecnología SynchMotion $^{\text{TM}}$ vienen en tamaños idénticos, son compatibles con los patines HG, EG y RG, están instalados en el raíl estándar y son muy fáciles de cambiar.

GUÍAS LINEALES RESISTENTES AL CALOR

Los patines de "acero macizo" de la Serie SE con sistemas de desviación de acero se despliegan para su uso permanente a temperaturas superiores a 80 °C. Las juntas laterales estándar son reemplazadas por juntas resistentes al calor y los tapones de plástico en el raíl con tapones de latón.

Propiedades especiales:

- Buena resistencia a la temperatura
- Temperatura de funcionamiento hasta 150 °C
- Picos de temperatura hasta 180 °C.

Ámbitos de uso:

- Dispositivos para tratamiento térmico
- Dispositivos de soldadura
- Dispositivos para la producción de vidrio
- Dispositivos para uso en vacíos

CÓDIGO DE PEDIDO: HG W 25 C C ZA H ZZ SE

Tabla 2.9 SERIE CON OPCIÓN DE SISTEMA DE DESVIACIÓN DE ACERO

Series	Tamaños
HG	15, 20, 25, 30, 35, 45, 55, 65
EG	20, 25
MGN	7, 9, 12, 15
MGW	12, 15

Código de pedido: Añadir el identificador "/SE" al código de pedido para la opción del sistema de desviación de acero. Consulte la estructura de códigos de pedido en el capítulo para cada serie.. HG: pág. 22, EG: pág. 39, MG: pág. 80

PROPIEDADES DE LAS GUÍAS LINEALES, SERIES HGYQH

Las guías lineales HIWIN de la serie HG con cuatro circuitos de recirculación, están diseñadas para altas cargas y rigideces. Debido a la disposición a 45° de los circuitos de recirculación de la serie HG, puede igualmente asumir cargas desde todas las direcciones. Bajas fuerzas de desplazamiento y una alta eficiencia son otras características de la serie HG. Los retenedores de bolas impiden que las bolas se caigan cuando el patín se retira del raíl durante el montaje.

Los modelos de la serie QH con tecnología SynchMotion™ ofrecen todas las ventajas de la serie estándar HG. El movimiento controlado de las bolas a una distancia definida también da como resultado un mayor rendimiento sincrónico, velocidades de desplazamiento más fiables, intervalos de lubricación más largos y menos ruido de funcionamiento. Puesto que las dimensiones de instalación de los patines QH son idénticas a las de los patines HG, también están montados en el raíl estándar HGR y, por lo tanto, pueden intercambiarse fácilmente. Para más información, consulte la pág. 19.

ESTRUCTURA DE LA SERIE HG/QH

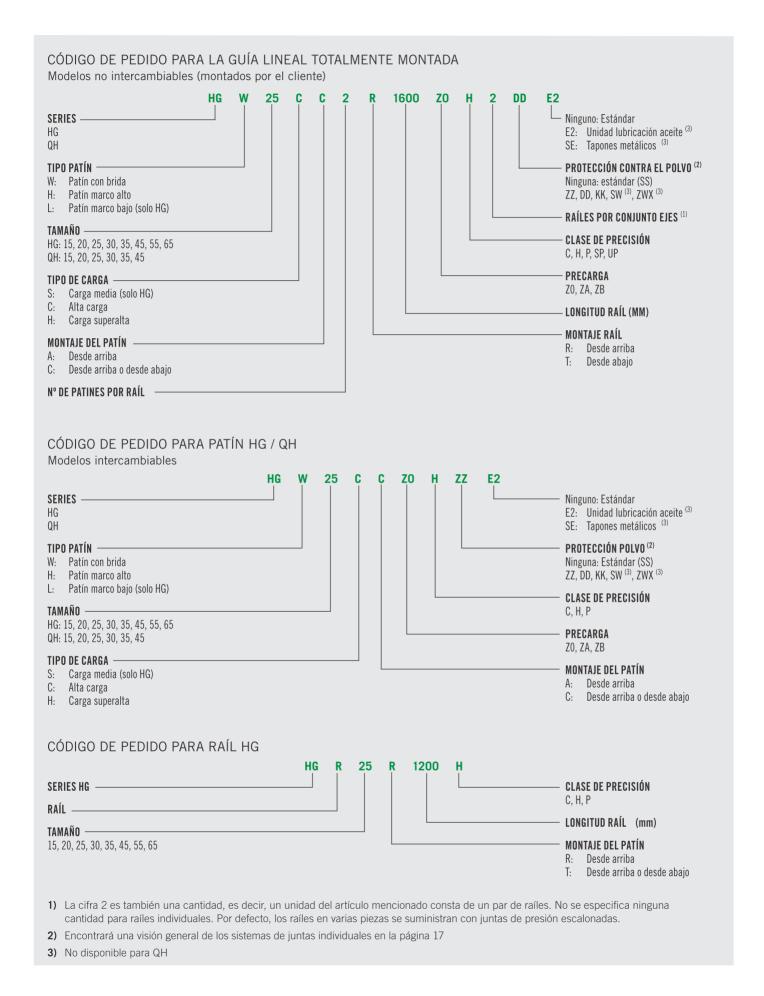
- Guía de rodamiento por recirculación en 4 filas
- Ángulo de contacto a 45° de la recirculación de bolas
- Retenedores de bolas que evitan que caigan al quitar el patín
- Distintas variantes de juntas según el campo de aplicación
- 6 opciones de conexión para engrasador o adaptador de lubricación
- Tecnología SynchMotion™ (serie QH)

VENTAJAS:

- Juego cero
- Intercambiable
- Alta precisión
- Alta capacidad de carga en todas las direcciones
- Bajas pérdidas de fricción aun con precarga gracias a recirculación de bolas optimizadas y 2 puntos de contacto

OTRAS VENTAJAS DE LA SERIE QH:

- Mejor rendimiento síncrono
- Optimizada para altas velocidades de desplazamiento
- Intervalos más largos de lubricación
- Menos ruido de funcionamiento
- Superiores capacidades de carga dinámicas


CÓDIGOS DE PEDIDO PARA LAS SERIES HG/QH

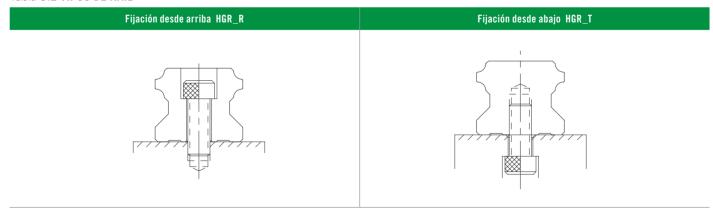
Para las guías lineales HG/QH, se hace una distinción entre modelos intercambiables y no intercambiables. Las dimensiones de ambos modelos son las mismas. La diferencia principal es que el patín y el raíl en los modelos intercambiables se pueden intercambiar libremente. El patín y el raíl se pueden pedir por separado y ser instalados por el cliente.

Su precisión se extiende a la clase P.

Dado su estricto control de precisión dimensional, los modelos intercambiables son una buena opción para los clientes que no utilizan raíles en pares sobre un eje. Las guías lineales no intercambiables siempre se suministran premontadas. Los códigos de pedido de la serie incluyen las dimensiones, el modelo, la clase de precisión, la precarga, etc.

TIPOS DE PATÍN

HIWIN proporciona patines cuadrados y con brida para sus guías lineales. Debido a su baja altura y su mayor superficie de montaje, los patines con brida son más adecuados para grandes cargas.

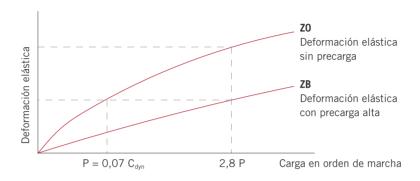

Tabla 3.1 TIPOS DE PATÍN

Tipo	Series / Tamaño	Estructura	Altura (mm)	Long. raíl (mm)	Aplicación típica
Tipo cuadrado alto	HGH-CA HGH-HA		28 – 90		Centros de mecanizaciónTornos CNC
Tipo cuadrado bajo	HGL-CA HGL-HA		24 – 70	100 – 4.000	 Rectificadoras Fresadoras de precisión Máquinas de corte de alto rendimiento Tecnología de automatización Tecnología del transporte
Tipo cuadrado brida	HGW-CC HGW-HC		24 – 90		 Tecnología de medición Máquinas y equipos que requieren alta precisión de posicionamiento

TIPOS DE RAÍL

Además de los raíles con fijación estándar desde arriba, HIWIN también suministra raíles para fijarlos desde abajo.

Tabla 3.2 **TIPOS DE RAÍL**



PRECARGA

Definición

Cada tipo de raíl puede precargarse según el tamaño de las bolas. La curva muestra que la rigidez se duplica con precargas superiores. La serie HG/QH ofrece tres clases de precarga estándar para varias aplicaciones y condiciones.

ID de precarga

Tabla 3.3 ID DE PRECARGA

ID	Precarga	Aplicación	Aplicaciones de muestra
ZO	Precarga ligera 0 — 0,02 C _{dyn}	Dirección de carga constante, poca vibración, se requiere menor precisión	 Tecnología de transporte Máquinas automáticas de envasado Ejes X-Y en maquinaria industrial Maquinaria de soldadura
ZA	Precarga media 0,05 — 0,07 C _{dyn}	Se requiere alta precisión	 Centros de mecanizado Ejes Z para maquinaria industrial Cepilladoras Tornos CNC Mesas X-Y de precisión Tecnología de medición
ZB	Precarga alta más de 0,1 C _{dyn}	Se requiere alta rigidez, vibración e impacto	 Centros de mecanizado Rectificadoras Tornos CNC Fresadoras horizontales y verticales Eje Z de máquinas herramienta Cortadoras de alto rendimiento

CAPACIDADES Y PARES DE CARGA

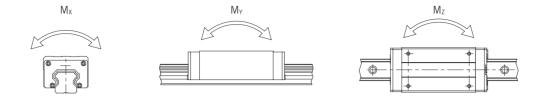


Tabla 3.4 CAPACIDADES Y PARES DE CARGA PARA LAS SERIES HG/QH

Series / tamaño	Capacidad de carga	Capacidad de carga	Mor	nento dinámico	(Nm)	Momento estático (Nm)			
Series / tainano	dinámica C _{dyn} (N) (1)	estática C ₀ (N)	M _x	M _y	Mz	M _{ox}	Moy	Moz	
HG_15C	11.380	16.970	76	67	67	120	100	100	
QH_15C	13.880	14.360	90	84	84	100	80	80	
HG_20S	12.190	16.110	99	61	61	130	80	80	
HG_20C	17.750	27.760	178	126	126	270	200	200	
QH_20C	23.080	25.630	231	171	171	260	190	190	
HG_20H	21.180	35.900	208	203	203	350	350	350	
QH_20H	27.530	31.670	268	230	230	310	270	270	
HG_25S	24.290	18.650	239	123	123	310	160	160	
HG_25C	26.480	36.490	301	240	240	420	330	330	
QH_25C	31.780	33.680	361	294	294	390	310	310	
HG_25H	32.750	49.440	374	379	379	560	570	570	
QH_25H	39.300	43.620	451	410	410	500	450	450	
HG_30C	38.740	52.190	494	396	396	660	530	530	
QH_30C	46.490	48.170	588	491	491	600	500	500	
HG_30H	47.270	69.160	600	630	630	880	920	920	
QH_30H	56.720	65.090	722	623	623	830	890	890	
HG_35C	49.520	69.160	832	577	577	1.160	810	810	
QH_35C	60.520	63.840	1.019	720	720	1.070	760	760	
HG_35H	60.210	91.630	1.011	918	918	1.540	1.400	1.400	
QH_35H	73.590	86.240	1.233	1.135	1.135	1.450	1.330	1.330	
HG_45C	77.570	102.710	1.497	1.169	1.169	1.980	1.550	1.550	
QH_45C	89.210	94.810	1.723	1.295	1.295	1.830	1.380	1.380	
HG_45H	94.540	136.460	1.825	1.857	1.857	2.630	2.680	2.680	
QH_45H	108.720	128.430	2.097	2.041	2.041	2.470	2.410	2.410	
HG_55C	114.440	148.330	2.843	2.039	2.039	3.690	2.640	2.640	
HG_55H	139.350	196.200	3.464	3.242	3.242	4.880	4.570	4.570	
HG_65C	163.630	215.330	5.049	3.245	3.245	6.650	4.270	4.270	
HG_65H	208.360	303.130	6.449	5.068	5.068	9.380	7.380	7.380	

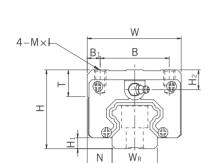
¹⁾ Capacidad de carga dinámica para distancia de desplazamiento de 50.000 m

RIGIDEZ

La rigidez depende de la precarga. Puede usarse la Fórmula F 3.1 para determinar la deformación según la rigidez.

F 3.1

- δ Deformación (μm)
- P Carga de trabajo (N)
- **k** Rigidez (N/μm)


Tabla 3.5 RIGIDEZ RADIAL PARA LAS SERIES HG / QH (Unidad: N/µm)

Clase de carga	Series / tamaño		Rigidez según la precarga	
Glase de Calga	Series / tailiallu	ZO	ZA	ZB
Carga media	HG_20S	130	170	190
	HG_15C	200	260	290
	QH_15C	180	230	260
	HG_20C	250	320	360
	QH_20C	230	290	320
	HG_25C	300	390	440
	QH_25C	270	350	400
Carra alta	HG_30C	370	480	550
Carga alta	QH_30C	330	430	500
	HG_35C	410	530	610
	QH_35C	370	480	550
	HG_45C	510	660	750
	QH_45C	460	590	680
	HG_55C	620	800	910
	HG_65C	760	980	1.120
	HG_20H	310	400	460
	QH_20H	280	360	410
	HG_25H	390	510	580
	QH_25H	350	460	520
	HG_30H	480	620	710
Corgo muy alto	QH_30H	430	560	640
Carga muy alta	HG_35H	530	690	790
	QH_35H	480	620	710
	HG_45H	650	850	970
	QH_45H	590	770	870
	HG_55H	790	1.030	1.180
	HG_65H	1.030	1.330	1.520

DIMENSIONES DE LOS PATINES HG / QH

DIMENSIONES DE HGH/QHH

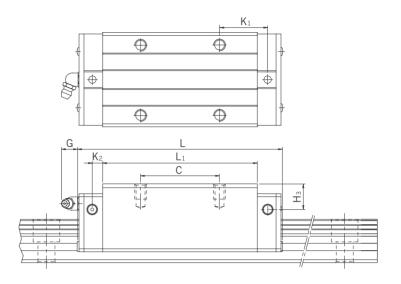


Tabla 3.6 **DIMENSIONES DEL PATÍN**

Series / tamaño		mensioi alación						D	imensio	ones de	l patín (mm)					Capac de cai	Peso	
	Н	H ₁	N	W	В	B ₁	C	L ₁	L	K ₁	K ₂	G	M×I	T	H ₂	H ₃	C _{dyn}	C ₀	(kg)
HGH15CA	28	4,3	9,5	34	26	4,0	26	39,4	61,4	10,00	4,85	5,3	M4 × 5	6,0	7,95	7,7	11.380	16.970	0,18
QHH15CA	28	4,0	9,5	34	26	4,0	26	39,4	61,4	10,00	5,00	5,3	M4 × 5	6,0	7,95	8,2	13.880	14.360	0,18
HGH20CA	20	4.0	10.0	4.4	20		36	50,5	77,5	12,25	0.00	10.0	MEC	0.0	0.00		17.750	27.760	0,30
HGH20HA	30	4,6	12,0	44	32	6,0	50	65,2	92,2	12,60	6,00	12,0	M5 × 6	8,0	6,00	6,0	21.180	35.900	0,39
QHH20CA	30	4,6	12,0	44	32	6.0	36	50,5	76,7	11,75	6.00	12,0	M5 × 6	8.0	6.00	6.0	23.080	25.630	0,29
QHH20HA	30	4,0	12,0	44	32	6,0	50	65,2	91,4	12,10	6,00	12,0	0 × CIVI	0,0	6,00	0,0	27.530	31.670	0,38
HGH25CA	40	5,5	12,5	48	35	6,5	35	58,0	84,0	15,70	6.00	12,0	M6 × 8	8.0	10,00	9,0	26.480	36.490	0,51
HGH25HA	40	3,3	12,5	40	33	0,0	50	78,6	104,6	18,50	0,00	12,0	INIOXO	0,0	10,00	9,0	32.750	49.440	0,69
QHH25CA	40	5.5	12,5	48	35	6.5	35	58,0	83,4	15,70	6.00	12.0	M6 × 8	8.0	10.00	9.0	31.780	33.680	0,50
QHH25HA	40	3,3	12,3	40	33	0,0	50	78,6	104,0	18,50	0,00	12,0	IVIOXO	0,0	10,00	9,0	39.300	43.620	0,68
HGH30CA	45	6.0	16.0	60	40	10.0	40	70,0	97,4	20,25	6.00	12.0	M8 × 10	8.5	9,50	13.8	38.740	52.190	0,88
HGH30HA	45	0,0	10,0	60	40	10,0	60	93,0	120,4	21,75	0,00	12,0	IVIO X 10	0,0	9,30	13,0	47.270	69.160	1,16
QHH30CA	45	6.0	16.0	60	40	10.0	40	70,0	97,4	19,50	6,25	12.0	M8 × 10	8.5	9,50	9.0	46.490	48.170	0,87
QHH30HA	43	0,0	10,0	00	40	10,0	60	93,0	120,4	21,75	0,23	12,0	IVIO X 10	0,5	3,30	9,0	56.720	65.090	1,15
HGH35CA	- 55	7,5	18.0	70	50	10.0	50	80,0	112,4	20,60	7.00	12.0	M8 × 12	10.2	16.00	19.6	49.520	69.160	1,45
HGH35HA	33	7,5	10,0	/0	30	10,0	72	105,8	138,2	22,50	7,00	12,0	IVIO X 12	10,2	10,00	19,0	60.210	91.630	1,92
QHH35CA	- 55	7,5	18.0	70	50	10.0	50	80,0	113,6	19,00	7,50	12,0	M8 × 12	10,2	15,50	13.5	60.520	63.840	1,44
QHH35HA	33	7,5	10,0	/0	30	10,0	72	105,8	139,4	20,90	7,30	12,0	IVIO X 12	10,2	15,50	13,3	73.590	86.240	1,90
HGH45CA	70	9,5	20.5	86	60	13.0	60	97,0	139,4	23,00	10.00	12.9	M10 × 17	16.0	18.50	30.5	77.570	102.710	2,73
HGH45HA	70	9,5	20,3	00	00	15,0	80	128,8	171,2	28,90	10,00	12,9	WIIU X I/	10,0	10,30	30,5	94.540	136.460	3,61
QHH45CA	70	9,2	20.5	86	60	13.0	60	97,0	139,4	23,00	10.00	12.9	M10 × 17	16.0	18.50	20.0	89.210	94.810	2,72
QHH45HA	70	9,2	20,5	00	00	13,0	80	128,8	171,2	29,09	10,00	12,9	WI10 × 17	10,0	16,30	20,0	108.720	128.430	3,59
HGH55CA	80	13,0	23.5	100	75	12,5	75	117,7	166,7	27,35	11.00	12.9	M12 × 18	17.5	22.00	29.0	114.440	148.330	4,17
HGH55HA	00	15,0	23,3	100	/3	12,3	95	155,8	204,8	36,40	11,00	12,9	IVI12 X 18	17,5	22,00	29,0	139.350	196.200	5,49
HGH65CA	90	15.0	31.5	126	76	25,0	70	144,2	200,2	43,10	14.00	12.9	M16 × 20	25.0	15.00	15.0	163.630	215.330	7,00
HGH65HA	30	15,0	31,3	120	/0	25,0	120	203,6	259,6	47,80	14,00	12,9	INITO X 50	25,0	15,00	15,0	208.360	303.130	9,82

^{1) 98,8} para la versión SE | 2) 121,8 para la versión SE

Para las dimensiones del raíl, véase la pág. 30; para adaptadores de lubricación estándar y opcional, véase pág. 107.

DIMENSIONES DE LOS PATINES HG / QH

DIMENSIONES DE HGL

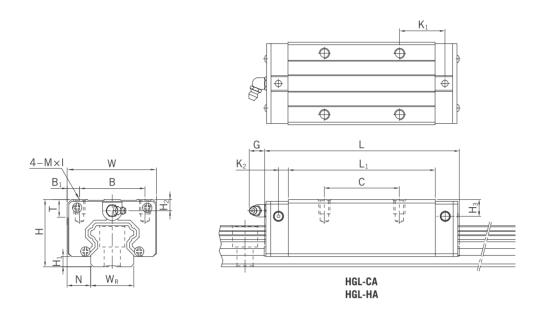


Tabla 3.7 **DIMENSIONES DEL PATÍN**

Series/tamaño	Dim Series / tamaño instala			Dimensiones del patín (mm)													Capacidades de carga (N)		Peso													
	Н	H ₁	N	W	В	B ₁	C	L ₁	L	K ₁	K ₂	G	M×I	T	H ₂	H ₃	C _{dyn}	C ₀	(kg)													
HGL15CA	24	4,3	9,5	34	26	4,0	26	39,4	61,4	10,00	4,85	5,3	M4 × 4	6,0	3,95	3,7	11.380	16.970	0,14													
HGL25CA	36	E E	10 5	48	35	C E	35	58,0	84,0	15,70	6.00	12.0	MC v C	9.0	6.00	E O	26.480	36.490	0,42													
HGL25HA	36	5,5	12,5	48	33	6,5	50	78,6	104,6	18,50	6,00	12,0	M6 × 6	8,0	6,00	5,0	32.750	49.440	0,57													
HGL30CA	42		16.0	60	40	10.0	40	70,0	97,4 1)	20,25	6.00	12.0	M8 × 10	0.5	C E O	10.0	38.740	52.190	0,78													
HGL30HA	42	2 6,0	10,0	00	40	10,0	60	93,0	120,42)	21,75	6,00	12,0	WIS X 10	8,5 6,5	6,50	10,8	47.270	69.160	1,03													
HGL35CA	48 7.5	48 7,5	48 7,5	48 7,5	48 7,5	48 7,5	40 7.5	40 7.5	18 75	48 75	48 7,5	48 7.5	48 7,5	48 7,5	7,5	7,5 18,0	70	50	10.0	50	80,0	112,4	20,60	7.00	12.0	M0 10	10.2	0.00	10.0	49.520	69.160	1,14
HGL35HA	40	7,5	18,0	18,0	18,0	18,0	/0	50	10,0	72	105,8	138,2	22,50	7,00	12,0	M8 × 12	10,2	9,00	12,6	60.210	91.630	1,52										
HGL45CA	60	0.5	20.5	86	60	12.0	60	97,0	139,4	23,00	10.00	12.0	M10 17	16.0	0.50	20.5	77.570	102.710	2,08													
HGL45HA	60	9,5	20,5	80	60	13,0	80	128,8	171,2	28,90 10,00	10,00 12,9	$2,9 M10 \times 17 $	16,0	8,50	20,5	94.540	136.460	2,75														
HGL55CA	70	12.0	23,5	100	75	12.5	75	117,7	166,7	27,35	11.00	12,9	M12 v 10	17,5	12.00	10.0	114.440	148.330	3,25													
HGL55HA	/0	13,0	23,5	100	75	12,5	95	155,8	204,8	36,40	11,00	12,9	M12 × 18	17,5	12,00	19,0	139.350	196.200	4,27													

^{1) 98,8} para la versión SE | 2) 121,8 para la versión SE

Para las dimensiones del raíl, véase la pág. 30; para adaptadores de lubricación estándar y opcional, véase pág. 107.

DIMENSIONES DE LOS PATINES HG / QH

DIMENSIONES DE HGW/QHW

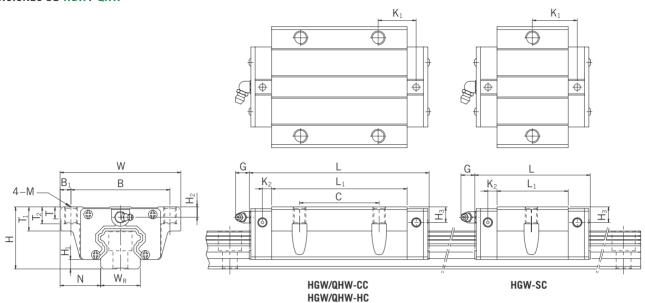


Tabla 3.8 **DIMENSIONES DEL PATÍN**

Series / tamaño		nensio Ilación		Dimensiones del patín (mm)													Capac de cai	Peso			
	Н	H ₁	N	W	В	B ₁	C	L ₁	L	K ₁	K ₂	M	G	T	T ₁	T ₂	H ₂	H ₃	C _{dyn}	C ₀	(kg)
HGW15CC	24	4,3	16,0	47	38	4,5	30	39,4	61,4	8,00	4,85	M5	5,3	6,0	8,9	7,0	3,95	3,7	11.380	16.970	0,17
QHW15CC	24	4,0	16,0	47	38	4,5	30	39,4	61,4	8,00	5,00	M5	5,3	6,0	8,9	7,0	3,95	4,2	13.880	14.360	0,17
HGW20SC							-	29,5	54,3	19,65									12.190	16.110	0,28
HGW20CC	30	4,6	21,5	63	53	5,0	40	50,5	77,5	10,25	6,00	M6	12,0	8,0	10,0	9,5	6,00	6,0	17.750	27.760	0,40
HGW20HC							40	65,2	92,2	17,60									21.180	35.900	0,52
QHW20CC	30	4.6	21,5	63	53	5.0	40	50,5	76,7	9,75	6.00	M6	12,0	8.0	10.0	9,5	6.00	6,0	23.080	25.630	0,40
QHW20HC	30	4,0	21,3	03	33	3,0	40	65,2	91,4	17,10	0,00	IWIO	12,0	0,0	10,0	3,3	0,00	0,0	27.530	31.670	0,52
HGW25SC							-	38,2	64,2	23,20									18.650	24.290	0,42
HGW25CC	36	5,5	23,5	70	57	6,5	45	58,0	84,0	10,70	6,00	M8	12,0	8,0	14,0	10,0	6,00	5,0	26.480	36.490	0,59
HGW25HC							43	78,6	104,6	21,00									32.750	49.440	0,80
QHW25CC	36	5,5	23,5	70	57	6.5	45	58,0	83,4	10,70	6,00	M8	12.0	8.0	14.0	10.0	6.00	5,0	31.780	33.680	0,59
QHW25HC	30	3,3	23,3	70	37	0,3	43	78,6	104,0	21,00	0,00	IVIO	12,0	0,0	14,0	10,0	0,00	3,0	39.300	43.620	0,80
HGW30CC	42	6,0	31,0	90	72	9.0	52	70,0	97,41)	14,25	6.00	M10	12,0	8,5	16.0	10.0	6,50	10.8	38.740	52.190	1,09
HGW30HC	44	0,0	31,0	30	12	3,0	JZ	93,0	120,42)	25,75	0,00	INITO	12,0	0,5	10,0	10,0	0,30	10,0	47.270	69.160	1,44
QHW30CC	42	6.0	31.0	90	72	9.0	52	70,0	97,4	13,50	6,25	M10	12.0	8.5	16.0	10.0	6,50	6.0	46.490	48.170	1,09
QHW30HC	42	0,0	31,0	30	12	3,0	32	93,0	120,4	25,75	0,23	IVIIO	12,0	0,5	10,0	10,0	0,50	0,0	56.720	65.090	1,44
HGW35CC	48	7,5	33.0	100	82	9.0	62	80,0	112,4	14,60	7.00	M10	12.0	10.1	18.0	13.0	9,00	12.6	49.520	69.160	1,56
HGW35HC	40	7,5	33,0	100	02	3,0	02	105,8	138,2	27,50	7,00	IVIIO	12,0	10,1	10,0	13,0	3,00	12,0	60.210	91.630	2,06
QHW35CC	48	7,5	33.0	100	82	9.0	62	80,0	113,6	13,00	7,50	M10	12.0	10.1	18.0	13.0	8,50	6.5	60.520	63.840	1,56
QHW35HC	40	7,5	33,0	100	02	3,0	02	105,8	139,4	25,90	7,30	IVIIO	12,0	10,1	10,0	13,0	0,50	0,5	73.590	86.240	2,06
HGW45CC	60	9.5	37.5	120	100	10.0	80	97,0	139,4	13,00	10.00	M12	12.9	15,1	22,0	15.0	8,50	20.5	77.570	102.710	2,79
HGW45HC	00	3,3	37,3	120	100	10,0	00	128,8	171,2	28,90	10,00	IVIIZ	12,3	15,1	22,0	13,0	0,50	20,5	94.540	136.460	3,69
QHW45CC	60	9.2	37.5	120	100	10.0	80	97,0	139,4	13,00	10.00	M12	12.9	15,1	22.0	15.0	8,50	10.0	89.210	94.810	2,79
QHW45HC	00	3,2	37,3	120	100	10,0	00	128,8	171,2	28,90	10,00	IVIIZ	12,3	15,1	22,0	13,0	0,50	10,0	108.720	128.430	3,69
HGW55CC	70	13.0	43.5	140	116	12.0	95	117,7	166,7	17,35	11.00	M14	12.9	17.5	26.5	17.0	12.00	19.0	114.440	148.330	4,52
HGW55HC	70	15,0	40,0	140	110	12,0	33	155,8	204,8	36,40	11,00	MITH	12,3	17,3	20,3	17,0	12,00	13,0	139.350	196.200	5,96
HGW65CC	90	15.0	53.5	170	142	14,0	110	144,2	200,2	23,10	14,00	M16	12.9	25	37,5	23,0	15.00	15.0	163.630	215.330	9,17
HGW65HC	100	15,0	33,3	1/0	142	14,0	110	203,6	259,6	52,80	14,00	INITO	12,3		37,3	20,0	15,00	15,0	208.360	303.130	12,89

^{1) 98,8} para la versión SE | 2) 121,8 para la versión SE

Para las dimensiones del raíl, véase la pág. 30; para adaptadores de lubricación estándar y opcional, véase pág. 107.

DIMENSIONES DEL RAÍL HG

Los raíles HG se usan tanto para los patines HG como para los QH.

DIMENSIONES DE HGR_R

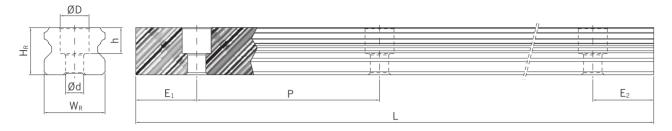
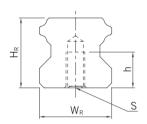



Tabla 3.9 DIMENSIONES DEL RAÍL HGR_R

Series / tamaño	Tornillo montaje		Dime	nsiones	del raí	l (mm)		Longitud máx. (mm)	Longitud máx.	E _{1/2} mín.	E _{1/2} máx.	Peso
ouriou, tamano	para raíl (mm)	W _R	H _R	D	h	d	P		$E_1 = E_2 (mm)$	(mm)	(mm)	(kg/m)
HGR15R	$M4 \times 16$	15	15,0	7,5	5,3	4,5	60	4.000	3.900	6	54	1,45
HGR20R	$M5 \times 16$	20	17,5	9,5	8,5	6,0	60	4.000	3.900	7	53	2,21
HGR25R	$M6 \times 20$	23	22,0	11,0	9,0	7,0	60	4.000	3.900	8	52	3,21
HGR30R	$M8 \times 25$	28	26,0	14,0	12,0	9,0	80	4.000	3.920	9	71	4,47
HGR35R	$M8 \times 25$	34	29,0	14,0	12,0	9,0	80	4.000	3.920	9	71	6,30
HGR45R	$M12 \times 35$	45	38,0	20,0	17,0	14,0	105	4.000	3.885	12	93	10,41
HGR55R	$M14 \times 45$	53	44,0	23,0	20,0	16,0	120	4.000	3.840	14	106	15,08
HGR65R	$M16 \times 50$	63	53,0	26,0	22,0	18,0	150	4.000	3.750	15	135	21,18

DIMENSIONES DE HGR_T

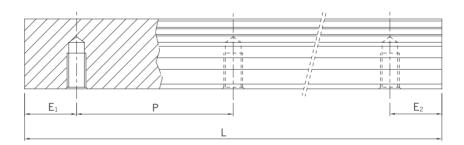
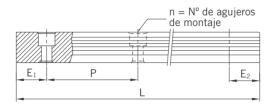


Tabla 3.10 **DIMENSIONES DEL RAÍL HGR_T**

Series / tamaño		Dimens	iones del r	aíl (mm)		Longitud máx.	Longitud máx.	E _{1/2} mín.	E _{1/2} máx. (mm)	Peso (kg/m)	
Series / taillallu	W _R	H _R	S	h	Р	(mm)	$\mathbf{E}_1 = \mathbf{E}_2 (\mathbf{mm})$	(mm)	(mm)		
HGR15T	15	15,0	M5	8	60	4.000	3.900	6	54	1,48	
HGR20T	20	17,5	M6	10	60	4.000	3.900	7	53	2,29	
HGR25T	23	22,0	M6	12	60	4.000	3.900	8	52	3,35	
HGR30T	28	26,0	M8	15	80	4.000	3.920	9	71	4,67	
HGR35T	34	29,0	M8	17	80	4.000	3.920	9	71	6,51	
HGR45T	45	38,0	M12	24	105	4.000	3.885	12	93	10,87	
HGR55T	53	44,0	M14	24	120	4.000	3.840	14	106	15,67	
HGR65T	63	53,0	M201)	30	150	4.000	3.750	15	135	21,73	

1) Desviación de DIN 64



- 1. La tolerancia para E es de +0,5 a -1 mm para los raíles estándar y de 0 a -0,3 mm para las juntas.
- 2. Si no se indican las dimensiones E1/2, el número máximo posible de agujeros de montaje se determinará teniendo en cuenta E1/2 min.
- 3. Los raíles se acortan a la longitud requerida. Si no se indican las dimensiones E1/2, éstas se realizarán simétricamente.

CÁLCULO DE LA LONGITUD DE LOS RAÍLES

HIWIN ofrece raíles en longitudes personalizadas. Para evitar el riesgo de que el extremo del raíl se vuelva inestable, el valor E no debe superar la mitad de la distancia entre los agujeros de montaje (P). Al mismo tiempo, el valor $E_{1/2}$ debe estar entre $E_{1/2}$ mín. y $E_{1/2}$ máx. para que el agujero de montaje no se rompa.

F 3.2
$$L = (n-1) \times P + E_1 + E_2$$

- L Longitud total del raíl (mm)
- n Nº de agujeros de montaje
- P Distancia entre dos agujeros de montaje (mm)

E_{1/2} Distancia desde el centro del último agujero de montaje hasta el extremo del raíl (mm)

PARES DE APRIETE PARA TORNILLOS DE MONTAJE

Un apriete insuficiente de los tornillos de montaje compromete en gran medida la precisión de la guía lineal; se recomiendan los siguientes pares de apriete para los tamaños de tornillo correspondientes.

Tabla 3.11 PARES DE APRIETE DE LOS TORNILLOS DE MONTAJE SEGÚN ISO 4762-12.9

Series / tamaño	Tamaño del tornillo	Par (Nm)
HG_15	$M4 \times 16$	4
HG_20	M5×16	9
HG_25	$M6 \times 20$	13
HG_30	M8 × 25	30
HG_30	M10	70

Series / tamaño	Tamaño del tornillo	Par (Nm)
HG_35	M8 × 25	30
HG_35	M10	70
HG_45	M12 × 35	120
HG_55	M14 × 45	160
HG_65	M16 × 50	200

TAPONES PARA AGUJEROS DE MONTAJE DE RAÍLES

Los tapones se utilizan para mantener los agujeros de montaje libres de virutas y suciedad. Los tapones de plástico estándar se suministran con cada raíl. Los tapones opcionales deben pedirse por separado.

Tabla 3.12 TAPONES CIEGOS PARA AGUJEROS DE MONTAJE DE RAÍLES

Raíl	Tornillo		Nº artículo		Ø D (mm)	Altura H (mm)	
Kali	101111110	Plástico	Latón	Acero	אָט פּ		
HGR15R	M4	5-001342	5-001344	-	7,5	1,1	
HGR20R	M5	5-001348	5-001350	5-001352	9,5	2,2	
HGR25R	M6	5-001353	5-001355	5-001357	11,0	2,5	
HGR30R	M8	5-001358	5-001360	5-001362	14,0	3,3	
HGR35R	M8	5-001358	5-001360	5-001362	14,0	3,3	
HGR45R	M12	5-001322	5-001324	5-001327	20,0	4,6	
HGR55R	M14	5-001328	5-001330	5-001332	23,0	5,5	
HGR65R	M16	5-001333	5-001335	5-001337	26,0	5,5	

SISTEMAS DE JUNTAS

Hay disponibles varios sistemas de sellado para los patines HIWIN. Encontrará una reseña general en la página 22. La tabla siguiente muestra la longitud total de los patines con los diferentes sistemas de juntas. Hay disponibles sistemas de juntas adecuados para estos tamaños.

Tabla 3.13 Longitud total de patines con diferentes sistemas de juntas (mm)

Carriag / Aprox 2	Longitud total L								
Series / tamaño	\$\$	DD	ZZ	КК	SW	ZWX			
HG_15C	61,4	68,0	69,0	75,6	63,2	-			
QH_15C	61,4	68,0	68,4	75,0	-	-			
HG_20S	56,5	59,5	57,5	62,5	57,5	61,3			
HG_20C	77,5	82,5	82,5	87,5	78,5	82,3			
QH_20C	76,7	81,7	81,9	86,9	-	-			
HG_20H	92,2	97,5	97,2	102,2	93,2	97,0			
QH_20H	91,4	96,4	96,6	101,6	-	-			
HG_25C	84,0	89,0	89,0	94,0	85,0	91,8			
QH_25C	83,4	88,4	89,4	94,4	-	-			
HG_25H	104,6	109,6	109,6	114,6	105,6	112,4			
QH_25H	104,4	109,0	110,0	115,0	-	-			
HG_30C	97,4	104,8	105,4	112,8	99,0	105,8			
QH_30C	97,4	104,8	104,8	112,2	-	-			
HG_30H	120,4	127,8	128,4	135,8	122,0	128,8			
QH_30H	120,4	127,8	127,8	135,2	-	-			
HG_35C	112,4	119,8	120,4	127,8	115,2	122,4			
QH_35C	113,6	118,6	119,0	124,0	-	-			
HG_35H	138,2	145,6	146,2	153,6	141,0	148,2			
QH_35H	139,4	144,4	144,8	149,8	-	-			
HG_45C	139,4	149,4	150,0	160,0	140,0	144,8			
QH_45C	139,4	146,6	147,2	154,4	-	-			
HG_45H	171,2	181,2	181,8	191,8	171,8	176,6			
QH_45H	171,2	178,4	179,0	186,2	-	-			
HG_55C	166,7	177,1	177,1	187,5	163,7	172,9			
HG_55H	204,8	215,2	215,2	225,5	201,8	211,0			
HG_65C	200,2	209,2	208,2	217,2	196,2	203,4			
HG_65H	259,6	268,6	267,6	276,6	255,6	262,8			

DENOMINACIÓN DE JUEGOS DE JUNTAS

Los conjuntos de juntas se suministran siempre junto con el material de montaje, e incluyen las piezas necesarias además de la junta estándar.

Fuerza de fricción (N)

FRICCIÓN

La tabla muestra la resistencia máxima de fricción de cada junta lateral. Según la configuración del sellado (SS, DD, ZZ, KK), puede ser que tenga que multiplicarse el valor. Los valores indicados se aplican a los patines sobre raíles no revestidos. Las fuerzas de fricción más potentes se producen en los raíles revestidos.

Tabla 3.14 RESISTENCIA A LA FRICCIÓN DE JUNTAS DE UN SOLO PUNTO DE CONTACTO

Series / tamaño	Fuerza de fricción (N)	Series / tamaño
HG/QH_15	1,2	HG_45
HG/QH_20	1,6	QH_45
HG/QH_25	2,0	HG_55
HG/QH_30	2,7	HG_65
HG/QH_35	3,1	

HG_45	3,9
QH_45	5,3
HG_55	4,7
HG_65	5,8

UNIDAD DE LUBRICACIÓN E2

Encontrará más información sobre la unidad de lubricación en la información general de la unidad de lubricación E2, en la página 11.

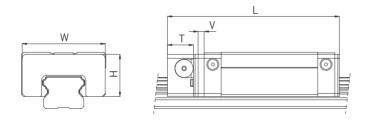


Tabla 3.15 **DIMENSIONES DEL PATÍN CON UNIDAD DE LUBRICACIÓN E2**

Modelo		Dimensiones del patín (mm)							Cantidad de aceite	Kilometraje ⁽²⁾
Modelo	W	Н	T	٧	L _{ss} ⁽¹⁾	L _{zz} (1)	L _{DD} (1)	L _{KK} (1)	(cm³)	(km)
HG_15C	32,4	19,5	12,5	3,0	75,4	80,5	82,0	87,1	1,6	2.000
HG_20S	43,0	24,4	13,5	3,5	70,9	73,0	75,0	78,0	3,9	4.000
HG_20C	43,0	24,4	13,5	3,5	93,5	95,6	97,5	100,6	3,9	4.000
HG_20H	43,0	24,4	13,5	3,5	108,2	110,2	112,2	115,2	3,9	4.000
HG_25C	46,4	29,5	13,5	3,5	100,0	102,0	104,0	107,0	5,1	6.000
HG_25H	46,4	29,5	13,5	3,5	120,6	122,6	124,6	127,6	5,1	6.000
HG_30C	58,0	35,0	13,5	3,5	112,9	118,0	119,9	125,0	7,8	8.000
HG_30H	58,0	35,0	13,5	3,5	135,9	141,0	142,9	148,0	7,8	8.000
HG_35C	68,0	38,5	13,5	3,5	127,9	133,4	135,3	140,8	9,8	10.000
HG_35H	68,0	38,5	13,5	3,5	153,7	159,2	161,1	166,6	9,8	10.000
HG_45C	82,0	49,0	16,0	4,5	157,2	162,1	166,1	171,7	18,5	20.000
HG_45H	82,0	49,0	16,0	4,5	189,0	193,9	197,9	203,5	18,5	20.000
HG_55C	97,0	55,5	16,0	4,5	183,9	189,6	193,8	200,0	25,9	30.000
HG_55H	97,0	55,5	16,0	4,5	222,0	227,7	231,9	238,1	25,9	30.000
HG_65C	121,0	69,0	16,0	4,5	219,2	220,7	226,7	229,7	50,8	40.000
HG_65H	121,0	69,0	16,0	4,5	278,6	280,1	286,1	289,1	50,8	40.000

¹⁾ Longitud total según la protección contra el polvo seleccionada. SS = Protección contra el polvo estándar

²⁾ Kilometraje al cual el nivel del depósito de aceite debería comprobarse a más tardar

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

Las series HG y QH están disponibles en cinco clases de precisión según el paralelismo entre el patín y el raíl, la precisión de la altura H y la precisión de la anchura N. La elección de la clase de precisión está determinada por los requisitos de la máquina.

PARALELISMO

Paralelismo de las superficies tope D y B del patín y del raíl, y paralelismo de la parte superior del patín C en relación a la superficie de montaje A del raíl. Se requiere una instalación de guía lineal ideal, así como una medición en el centro del patín.

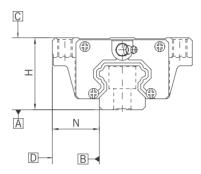


Tabla 3.16 Tolerancia de Paralelismo entre patín y raíl (mm)

Longitud de raíl (mm)	Clase de precisión							
Longituu uo ran (mm)	C	Н	P	SP	UP			
- 100	12	7	3	2	2			
100 - 200	14	9	4	2	2			
200 – 300	15	10	5	3	2			
300 - 500	17	12	6	3	2			
500 – 700	20	13	7	4	2			
700 - 900	22	15	8	5	3			
900 - 1100	24	16	9	6	3			
1100 - 1500	26	18	11	7	4			
1500 - 1900	28	20	13	8	4			
1900 - 2500	31	22	15	10	5			
2500 - 3100	33	25	18	11	6			
3100 - 3600	36	27	20	14	7			
3600 - 4000	37	28	21	15	7			

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

PRECISIÓN - ALTO Y ANCHO

Tolerancia del alto H

Variación admisible de la dimensión absoluta de la altura H, medida entre el centro de las superficies roscadas C y la parte inferior del raíl A, con el patín en cualquier posición sobre el raíl.

Variación del alto H

Variación admisible de la altura H entre varios patines sobre un raíl, medida en la misma posición del raíl.

Tolerancia del ancho N

Variación admisible de la dimensión absoluta de la anchura N, medida entre el centro de las superficies roscadas D y B, con el patín en cualquier posición sobre el raíl.

Variación del ancho N

Variación admisible de la anchura N entre varios patines sobre un raíl, medida en la misma posición del raíl.

Tabla 3.17 TOLERANCIAS DEL ALTO Y DEL ANCHO DE MODELOS NO INTERCAMBIABLES (mm)

Series / tamaño	Clase de precisión	Tolerancia del alto de H	Tolerancia del ancho de N	Variación del alto de H	Variación del ancho de l
	C (Normal)	± 0,1	± 0,1	0,02	0,02
	H (Alta)	± 0,03	± 0,03	0,01	0,01
	P (Precisión)	0	0	0,006	0,006
HG_15, 20 QH_15, 20	r (riecision)	- 0,03	- 0,03	0,000	0,000
QII_13, 20	SP (Superprecisión)	0	0	0,004	0,004
	or (outperpression)	- 0,015	- 0,015		
	UP (Ultraprecisión)	0	0	0,003	0,003
		- 0,008	- 0,008		·
	C (Normal)	± 0,1	± 0,1	0,02	0,03
	H (Alta)	± 0,04	± 0,04	0,015	0,015
	P (Precisión)	0	0	0,007	0,007
HG_25, 30, 35 QH_25, 30, 35	1 (Frecision)	- 0,04	- 0,04	0,007	0,007
QП_20, 30, 30	SP (Superprecisión)	0	0	0,005	0,005
	or (ouperprecision)	- 0,02	- 0,02		
	UP (Ultraprecisión)	0	0	0,003	0,003
		- 0,01	- 0,01		
	C (Normal)	± 0,1	± 0,1	0,03	0,03
	H (Alta)	± 0,05	± 0,05	0,015	0,02
	D (Drasisión)	0	0	0.007	0,01
HG_45, 55 QH_45	P (Precisión)	- 0,05	- 0,05	0,007	
_ ,	SP (Superprecisión)	0	0	0,005	0,007
	31 (Superprecision)	- 0,03	- 0,03	0,003	0,007
	UP (Ultraprecisión)	0	0	0,003	0,005
	or (ortraprecision)	- 0,02	- 0,02	0,000	
	C (Normal)	± 0,1	± 0,1	0,03	0,03
	H (Alta)	± 0,07	± 0,07	0,02	0,025
	P (Procisión)	0	0	0,01	0.015
HG_65	P (Precisión)	- 0,07	- 0,07	0,01	0,015
_	SP (Superprecisión)	0	0	0,007	0,01
	or (ouperprecision)	- 0,05	- 0,05	0,007	0,01
	UP (Ultraprecisión)	0	0	0,005	0,007
	Or (Ortraprodiction)	-0,03	-0,03	0,000	0,007

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

PRECISIÓN – ALTURA Y ANCHURA

Tabla 3.18 TOLERANCIAS DEL ALTO Y DEL ANCHO DE MODELOS INTERCAMBIABLES (mm)

Series / tamaño	Clase de precisión	Tolerancia del alto de H	Tolerancia del ancho de N	Variación del alto de H	Variación del ancho de N
	C (Normal)	± 0,1	± 0,1	0,02	0,02
HG_15, 20 QH_15, 20	H (Alta)	± 0,03	± 0,03	0,01	0,01
	P (Precisión)	± 0,015	± 0,015	0,006	0,006
	C (Normal)	± 0,1	± 0,1	0,02	0,03
HG_25, 30, 35 QH 25, 30, 35	H (Alta)	± 0,04	± 0,04	0,015	0,015
4,,	P (Precisión)	± 0,02	± 0,02	0,007	0,007
	C (Normal)	± 0,1	± 0,1	0,03	0,03
HG_45, 55 QH_45	H (Alta)	± 0,05	± 0,05	0,015	0,02
	P (Precisión)	± 0,025	± 0,025	0,007	0,01
	C (Normal)	± 0,1	± 0,1	0,03	0,03
HG_65	H (Alta)	± 0,07	± 0,07	0,02	0,025
	P (Precisión)	± 0,035	± 0,035	0,01	0,015

TOLERANCIAS ADMISIBLES DE LAS SUPERFICIES DE MONTAJE

Una vez cumplidos los requisitos relativos a la precisión de las superficies de montaje, se consiguen una buena precisión, rigidez y duración de las guías lineales de las series HG y QH.

Paralelismo de la superficie de referencia (P):

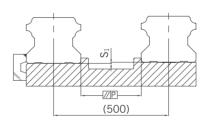


Tabla 3.19 TOLERANCIA MÁXIMA PARA EL PARALELISMO (P) (µm)

Series / tamaño	Clase de precarga					
3011037 talliano	ZO	ZA	ZB			
HG/QH_15	25	18	-			
HG/QH_20	25	20	18			
HG/QH_25	30	22	20			
HG/QH_30	40	30	27			
HG/QH_35	50	35	30			
HG/QH_45	60	40	35			
HG_55	70	50	45			
HG_65	80	60	55			

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

PRECISIÓN – ALTURA Y ANCHURA

Tabla 3.20 Tolerancia máxima para la altura de la superficie de referencia (S₁) (μm)

Series / tamaño		Clase de precarga									
Series / tamano	Z0	ZA	ZB								
HG/QH_15	130	85	-								
HG/QH_20	130	85	50								
HG/QH_25	130	85	70								
HG/QH_30	170	110	90								
HG/QH_35	210	150	120								
HG/QH_45	250	170	140								
HG_55	300	210	170								
HG_65	350	250	200								

ALTO Y ENCAJE DE LA BANCADA

Las alturas imprecisas o irregulares de la superficie de montaje de la bancada, comprometen la precisión y pueden conducir a conflictos con el patín o los perfiles del raíl. Deben respetarse las siguientes alturas de bancada y perfiles de los bordes para evitar problemas de montaje.

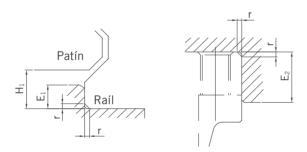


Tabla 3.21 ALTO Y ENCAJE DE LA BANCADA (mm)

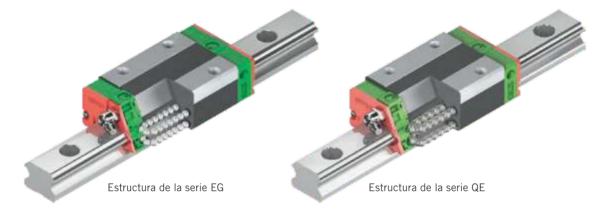
Series/tamaño	Radio r máx. del borde	Altura de la bancada del borde de referencia del raíl E ₁	Altura de la bancada del borde de referencia del patín E ₂	Holgura bajo el patín H ₁
HG_15	0,5	3,0	4,0	4,3
QH_15	0,5	3,0	4,0	4,0
HG/QH_20	0,5	3,5	5,0	4,6
HG/QH_25	1,0	5,0	5,0	5,5
HG/QH_30	1,0	5,0	5,0	6,0
HG/QH_35	1,0	6,0	6,0	7,5
HG/QH_45	1,0	8,0	8,0	9,5
HG_55	1,5	10,0	10,0	13,0
HG_65	1,5	10,0	10,0	15,0

PROPIEDADES DE LAS GUÍAS LINEALES, SERIES EGYQE

Las guías lineales HIWIN de la serie EG con cuatro trayectorias de bolas tienen una baja altura de instalación, lo que las hace ideales para aplicaciones con un bajo espacio de instalación. A pesar de esto, la serie EG tiene las mismas propiedades que la serie HG: buena capacidad de carga, baja fuerza de desplazamiento y alta eficiencia. Los collarines impiden que las bolas se caigan cuando el patín se retira del raíl durante el montaje.

Los modelos de la serie QE con la tecnología SynchMotion™ ofrecen todas las ventajas de la serie estándar EG. El movimiento controlado de las bolas a una distancia definida también da como resultado un mejor rendimiento sincrónico, velocidades de desplazamiento más fiables, intervalos de lubricación más largos y menos ruido de funcionamiento. Puesto que las dimensiones de instalación de los patines QE son idénticas a las de los patines EG, también se montan en el raíl estándar EGR y por tanto pueden intercambiarse con facilidad. Para más información, consulte la pág. 19.

ESTRUCTURA DE LA SERIE EG/QE

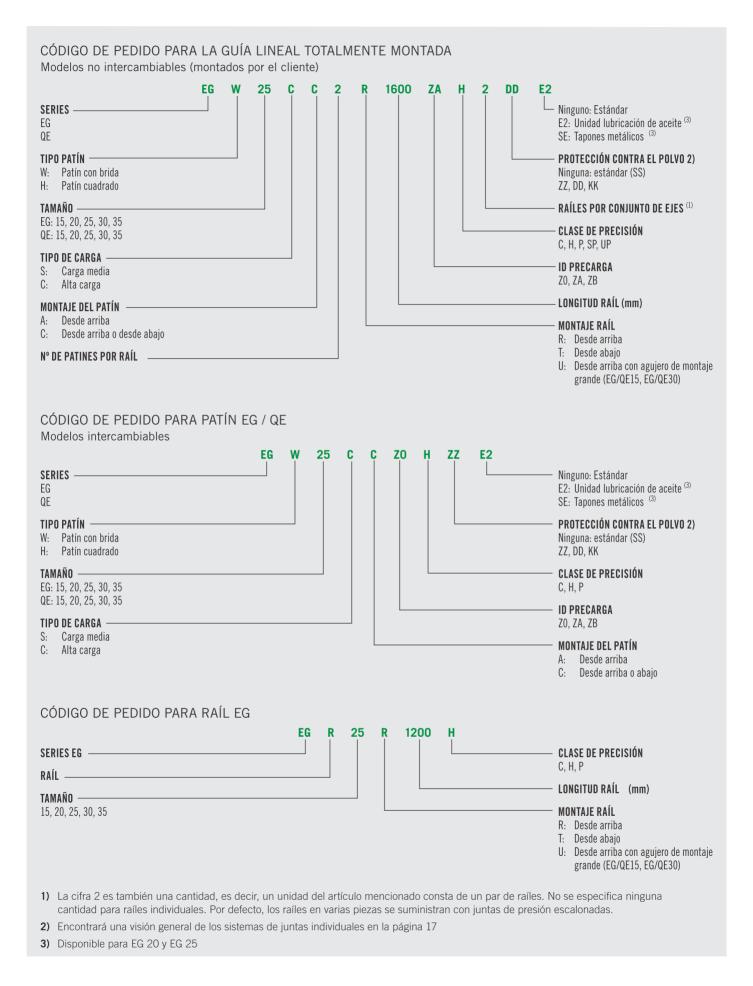

- Guía de recirculación de bolas en 4 filas
- Ángulo de contacto de 45° de las trayectorias de las bolas
- Los collarines evitan que las bolas se salgan al sacar el patín
- Varias opciones de sellado según el campo de aplicación
- 6 opciones para conectar engrasadores o adaptadores de lubricación
- Tecnología SynchMotion™ (serie QEs)

VENTAJAS:

- Juego cero
- Intercambiable
- Alta precisión
- Alta capacidad de carga en todas las direcciones
- Baja pérdida de fricción aun con precarga gracias a las trayectorias optimizadas de las bolas y el contacto en 2 puntos

OTRAS VENTAJAS DE LA SERIE QE:

- Mejor rendimiento síncrono
- Optimizada para altas velocidades de desplazamiento
- Intervalos de lubricación más largos
- Menos ruido de funcionamiento
- Mayor capacidad de carga dinámica



CÓDIGOS DE PEDIDO PARA LAS SERIES EG/QE

PEn las guías lineales EG/QE se hace una distinción entre los modelos intercambiables y los no intercambiables. Las dimensiones de ambos modelos son las mismas. La diferencia principal es que el patín y el raíl de los modelos intercambiables se pueden intercambiar libremente. El patín y el raíl pueden pedirse por separado y ser instalados por el cliente.

Su precisión se extiende a la clase P. Debido a su exigente control de precisión dimensional, los módulos intercambiables son una buena opción para los clientes que no utilizan pares de raíles sobre un eje. Las guías lineales no intercambiables siempre se suministran premontadas. Los códigos de pedido de la serie incluyen las dimensiones, el modelo, la clase de precisión, la precarga, etc.

TIPOS DE PATÍN

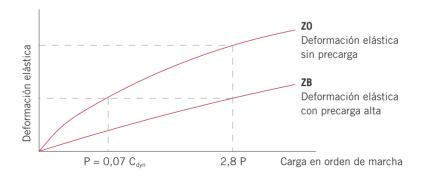
HIWIN proporciona patines cuadrados y con brida para sus guías lineales. Gracias a su baja altura y su mayor superficie de montaje, los patines con bridas son más adecuados para grandes cargas.

Tabla 3.22 TIPOS DE PATÍN

Tipo	Series / Tamaño	Estructura	Altura (mm)	Long. raíl (mm)	Aplicación típica
Tipo cuadrado	EGH-SA EGH-CA				 Centros de mecanizado Tornos CNC Rectificadoras Fresadoras de precisión
Tipo brida	EGW-SC EGW-CC		24 – 48	100 – 4.000	 Máquinas de corte de alto rendimiento Tecnología de automatización Tecnología del transporte Tecnología de medición Máquinas y equipos que requieren alta precisión de posicionado

TIPOS DE RAÍL

Además de los raíles con fijación estándar desde arriba, HIWIN también suministra raíles para fijarlos desde abajo.


Tabla 3.23 TIPOS DE RAÍL

PRECARGA

Definición

Cada tipo de raíl puede precargarse modificando el tamaño de las bolas. La curva muestra que la rigidez se duplica con precargas superiores. La serie EG/QE ofrece tres clases de precarga estándar para varias aplicaciones y condiciones.

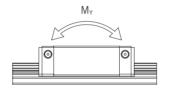

ID de precarga

Tabla 3.24 ID DE PRECARGA

ID	Precarga	Aplicación	Aplicaciones de muestra
ZO	Precarga ligera 0 – 0,02 C _{dyn}	Dirección de carga constante, poca vibración, se requiere menor precisión	 Tecnología de transporte Máquinas automáticas de envasado Ejes X-Y en maquinaria industrial Maquinaria de soldadura
ZA	Precarga media 0,03 — 0,05 C _{dyn}	Se requiere alta precisión	 Centros de mecanizado Ejes Z para maquinaria industrial Cepilladoras Tornos CNC Mesas X-Y de precisión Tecnología de medición
ZB	Precarga alta 0,06 — 0,08 C _{dyn}	Se requiere alta rigidez, vibración e impacto	 Centros de mecanizado Rectificadoras Tornos CNC Fresadoras horizontales y verticales Eje Z de máquinas herramienta Cortadoras de alto rendimiento

CAPACIDADES Y PARES DE CARGA

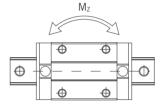


Tabla 3.25 CAPACIDADES Y PARES DE CARGA PARA LAS SERIES EG/QE

Series / tamaño	Capacidad de carga	Capacidad de carga	Mor	nento dinámico	(Nm)	Momento estático (Nm)			
Series / taillallu	dinámica C _{dyn} (N) (1)	estática C ₀ (N)	M _x	My	Mz	Mox	Moy	M _{oz}	
EG_15S	5.350	9.400	45	22	22	80	40	40	
QE_15S	8.560	8.790	68	29	29	70	30	30	
EG_15C	7.830	16.190	62	48	48	130	100	100	
QE_15C	12.530	15.280	98	73	73	120	90	90	
EG_20S	7.230	12.740	73	34	34	130	60	60	
QE_20S	11.570	12.180	123	47	47	130	50	50	
EG_20C	10.310	21.130	107	78	78	220	160	160	
QE_20C	16.500	20.210	171	122	122	210	150	150	
EG_25S	11.400	19.500	134	70	70	230	120	120	
QE_25S	18.240	18.900	212	96	96	220	100	100	
EG_25C	16.270	32.400	190	160	160	380	320	320	
QE_25C	26.030	31.490	305	239	239	370	290	290	
EG_30S	16.420	28.100	233	122	122	400	210	210	
QE_30S	26.270	27.820	377	169	169	400	180	180	
EG_30C	23.700	47.460	339	274	274	680	550	550	
QE_30C	37.920	46.630	544	414	414	670	510	510	
EG_35S	22.660	37.380	339	187	187	560	310	310	
QE_35S	36.390	36.430	609	330	330	610	330	330	
EG_35C	33.350	64.840	504	354	354	980	690	690	
QE_35C	51.180	59.280	863	648	648	1,000	750	750	

¹⁾ Capacidad de carga dinámica para distancia de desplazamiento de 50.000 m

RIGIDEZ

La rigidez depende de la precarga. Puede usarse la Fórmula F 3.3 para determinar la deformación según la rigidez.

F 3.3

$$\delta = \frac{P}{K}$$

- δ Deformación (μ m)
- P Carga de trabajo (N)
- **k** Rigidez (N/μm)

Tabla 3.26 RIGIDEZ RADIAL PARA LAS SERIES EG / QE (Unidad: N/µm)

Clase de carga	Series / tamaño		Rigidez según la precarga	
Glase de Calga	Series / taillallu	ZO	ZA	ZB
	EG_15S	105	126	141
	QE_15S	96	115	128
	EG_20S	126	151	168
	QE_20S	116	139	153
Carra madia	EG_25S	156	187	209
Carga media	QE_25S	137	165	184
	EG_30S	184	221	246
	QE_30S	169	203	226
	EG_35S	221	265	295
	QE_35S	214	257	287
	EG_15C	172	206	230
	QE_15C	157	187	209
	EG_20C	199	238	266
	QE_20C	183	219	245
Carga alta	EG_25C	246	296	329
Garga arra	QE_25C	219	263	293
	EG_30C	295	354	395
	QE_30C	271	326	363
	EG_35C	354	425	474
	QE_35C	333	399	445

DIMENSIONES DE LOS PATINES EG / QE

DIMENSIONES DE EGH / QEH

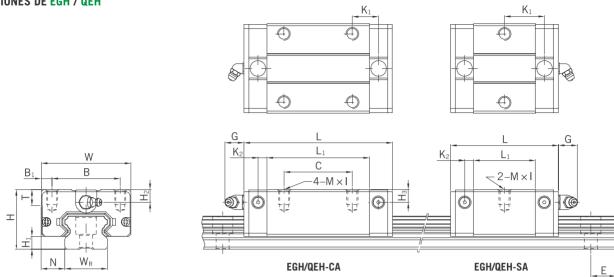


Tabla 3.27 **DIMENSIONES DEL PATÍN**

Series / tamaño		mensior alación						D	limensi	ones del	patín (mm)					Capac de car	Peso	
	Н	H ₁	N	W	В	B ₁	C	L ₁	L	K ₁	K ₂	G	M×I	T	H ₂	H ₃	C _{dyn}	C ₀	(kg)
EGH15SA	0.4	4.5	0.5	34	0.0	4.0	-	23,1	40,1	14,80	2.50	F 7	MAC				5.350	9.400	0,09
EGH15CA	24	4,5	9,5	34	26	4,0	26	39,8	56,8	10,15	3,50	5,7	M4 × 6	6,0	5,5	6,0	7.830	16.190	0,15
QEH15SA	24	4.0	0.5	34	26	4.0	-	23,1	40,1	14,80	3.50	F 7	M4 × 6				8.560	8.790	0,09
QEH15CA	24	4,0	9,5	34	26	4,0	26	39,8	56,8	10,15	3,50	5,7	IVI4 × b	6,0	5,5	6,0	12.530	15.280	0,15
EGH20SA	28	0.0	11.0	42	32	F 0	-	29,0	50,0	18,75	4.15	12.0	M5 × 7	7.5	0.0	0.0	7.230	12.740	0,15
EGH20CA	28	6,0	11,0	42	32	5,0	32	48,1	69,1	12,30	4,15	12,0	IVI5 × /	7,5	6,0	6,0	10.310	21.130	0,24
QEH20SA	28		11.0	42	32	F 0	-	29,0	50,0	18,75	4.15	10.0	ME 7	7.5		6.5	11.570	12.180	0,15
QEH20CA	28	6,0	11,0	42	32	5,0	32	48,1	69,1	12,30	4,15	12,0	M5 × 7	7,5	6,0	6,5	16.500	20.210	0,23
EGH25SA	33	7.0	12,5	48	35	6,5	-	35,5	59,1	21,90	4.55	10.0	M6 × 9	8.0	0.0	8.0	11.400	19.500	0,25
EGH25CA	33	7,0	12,5	48	35	0,0	35	59,0	82,6	16,15	4,55	12,0	INIO X 9	8,0	8,0	8,0	16.270	32.400	0,41
QEH25SA	33	6.2	12.5	48	35	C F	-	35,5	60,1	21,90	5.00	10.0	M6 × 9	8.0	0.0	8.0	18.240	18.900	0,24
QEH25CA	33	6,2	12,5	48	35	6,5	35	59,0	83,6	16,15	5,00	12,0	INIO × 9	8,0	8,0	8,0	26.030	31.490	0,40
EGH30SA	42	10.0	16,0	60	40	10.0	-	41,5	69,5	26,75	6.00	12,0	M8 × 12	9.0	8,0	9.0	16.420	28.100	0,45
EGH30CA	42	10,0	16,0	60	40	10,0	40	70,1	98,1	21,05	6,00	12,0	WIX × 12	9,0	8,0	9,0	23.700	47.460	0,76
QEH30SA	42	10.0	16.0	60	40	10.0	-	41,5	67,5	25,75	6.00	12.0	M8 × 12	9.0	8.0	9.0	26.270	27.820	0,44
QEH30CA	42	10,0	16,0	60	40	10,0	40	70,1	96,1	20,05	6,00	12,0	W8 × 12	9,0	8,0	9,0	37.920	46.630	0,75
EGH35SA	48	11.0	10.0	70	50	10.0	-	45,0	75,0	28,50	7.00	12.0	M8 × 12	10.0	0 E	0.5	22.660	37.380	0,74
EGH35CA	48	11,0	18,0	/0	50	10,0	50	78,0	108,0	20,00	7,00	12,0	IVI X 12	10,0	8,5	8,5	33.350	64.840	1,10
QEH35SA	40	11.0	10.0	70	EO	10.0	-	51,0	76,0	30,30	C 25	12.0	M0 10	10.0	0.5	0.5	36.390	36.430	0,58
QEH35CA	48	11,0	18,0	70	50	10,0	50	83,0	108,0	21,30	6,25	12,0	M8 × 12	10,0	8,5	8,5	51.180	59.280	0,90

Para las dimensiones del raíl, véase la pág. 45; para adaptadores de lubricación estándar y opcional, véase pág. 107.

DIMENSIONES DE LOS PATINES EG / QE

DIMENSIONES DE EGW / QEW

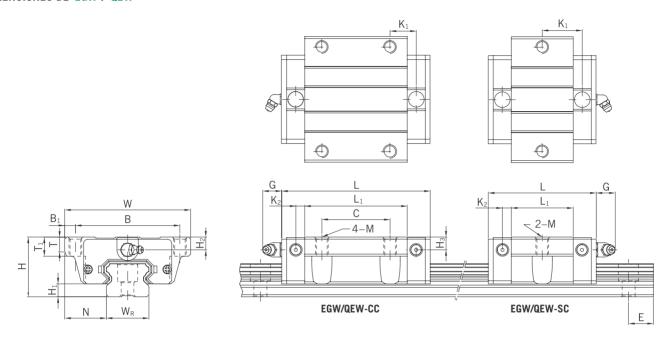


Tabla 3.28 **DIMENSIONES DEL PATÍN**

Series / tamaño		mensio alación							Dimen	siones c	lel patí	n (mm)							Capacidades de carga (N)			
	Н	H ₁	N	W	В	B ₁	C	L ₁	L	K ₁	K ₂	G	M	Т	T ₁	H ₂	H ₃	C _{dyn}	C ₀	(kg)		
EGW15SC	0.4	4.5	10.5	F.0.	41	F F	-	23,1	40,1	14,80	2.50	F 7	145	F 0	7		0.0	5.350	9.400	0,12		
EGW15CC	24	4,5	18,5	52	41	5,5	26	39,8	56,8	10,15	3,50	5,7	M5	5,0	/	5,5	6,0	7.830	16.190	0,21		
QEW15SC	0.4	4.0	10.5		41		-	23,1	40,1	14,80	3.50	F 7		F 0				8.560	8.790	0,12		
QEW15CC	24	4,0	18,5	52	41	5,5	26	39,8	56,8	10,15	3,50	5,7	M5	5,0	-	5,5	6,0	12.530	15.280	0,21		
EGW20SC	0.0	0.0	10.5	F0	40	F 0	-	29,0	50,0	18,75	4.15	10.0	MC	7.0	0	0.0		7.230	12.740	0,19		
EGW20CC	28	6,0	19,5	59	49	5,0	32	48,1	69,1	12,30	4,15	12,0	M6	7,0	9	6,0	6,0	10.310	21.130	0,32		
QEW20SC	28	6,0	19,5	59	49	5,0	-	29,0	50,0	18,75	4.15	12,0	M6	7.0		6.0	6,5	11.570	12.180	0,19		
QEW20CC	28	6,0	19,5	59	49	5,0	32	48,1	69,1	12,30	4,15	12,0	IVIO	7,0	-	6,0	6,5	16.500	20.210	0,31		
EGW25SC	33	7.0	25.0	73	60	6,5	-	35,5	59,1	21,90	4 5 5	12.0	M8	7.5	10	8.0	8.0	11.400	19.500	0,35		
EGW25CC	33	7,0	25,0	/3	60	6,5	35	59,0	82,6	16,15	4,55	12,0	IVI8	7,5	10	8,0	8,0	16.270	32.400	0,59		
QEW25SC	22		25.0	73		0.5	-	35,5	60,1	21,90	5.00	10.0	M8	7.5		0.0	8.0	18.240	18.900	0,34		
QEW25CC	33	6,2	25,0	/3	60	6,5	35	59,0	83,6	16,15	5,00	12,0	IVIO	7,5	-	8,0	8,0	26.030	31.490	0,58		
EGW30SC	42	10.0	21.0	90	72	0.0	-	41,5	69,5	26,75	6.00	10.0	M10	7.0	10	8.0	9,0	16.420	28.100	0,62		
EGW30CC	42	10,0	31,0	90	12	9,0	40	70,1	98,1	21,05	6,00	12,0	M10	7,0	10	8,0	9,0	23.700	47.460	1,04		
QEW30SC	42	10.0	31.0	90	72	0.0	-	41,5	67,5	25,75	6.00	12.0	M10	7.0		8.0	0.0	26.270	27.820	0,61		
QEW30CC	1 42	10,0	31,0	90	12	9,0	40	70,1	96,1	20,05	0,00	12,0	IVITU	7,0	-	0,0	9,0	37.920	46.630	1,03		
EGW35SC	48	11,0	33.0	100	82	9,0	-	45,0	75,0	28,50	7,00	12,0	M10	10.0	13	8.5	8.5	22.660	37.380	0,91		
EGW35CC	48	11,0	33,0	100	82	9,0	50	78,0	108,0	20,00	7,00	12,0	IVITU	10,0	13	8,5	8,5	33.350	64.840	1,40		
QEW35SC	48	11.0	33,0	100	82	9.0	-	51,0	76,0	30,30	6,25	12,0	M10	10.0	13	8,5	8,5	36.390	36.430	0,77		
QEW35CC	40	11,0	33,0	100	02	9,0	50	83,0	108,0	21,30	0,23	12,0	INITO	10,0	13	0,0	0,0	51.180	59.280	1,19		

Para las dimensiones del raíl, véase la pág. 45; para adaptadores de lubricación estándar y opcional, véase pág. 107.

DIMENSIONES DEL RAÍL EG

Los raíles EG se usan tanto para los patines EG como para los QE

DIMENSIONES DE EGR_R

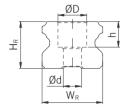


Tabla 3.29 **DIMENSIONES DEL RAÍL EGR_R**

Series / tamaño	Tornillo montaje		Dime	nsiones	del raí	(mm)		Longitud máx.			E _{1/2} máx.	Peso
ociics/ tamano	para raíl (mm)	W _R	H _R	D	h	d	Р	(mm)	$E_1 = E_2 (mm)$	$E_1 = E_2 (mm) \qquad (mm)$		(kg/m)
EGR15R	M3 × 16	15	12,5	6,0	4,5	3,5	60	4.000	3.900	6	54	1,25
EGR20R	$M5 \times 16$	20	15,5	9,5	8,5	6,0	60	4.000	3.900	7	53	2,08
EGR25R	M6 × 20	23	18,0	11,0	9,0	7,0	60	4.000	3.900	8	52	2,67
EGR30R	M6 × 25	28	23,0	11,0	9,0	7,0	80	4.000	3.920	9	71	4,35
EGR35R	M8 × 25	34	27,5	14,0	12,0	9,0	80	4.000	3.920	9	71	6,14

DIMENSIONES DE EGR_U (agujeros de montaje de mayor tamaño)

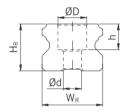
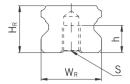


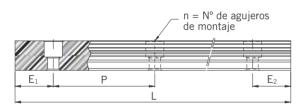
Tabla 3.30 **DIMENSIONES DEL RAÍL EGR_U**

Series / tamaño	Tornillo montaje		Dime	nsiones	del raí	(mm)		Longitud máx.	Longitud máx.	E _{1/2} mín.	E _{1/2} máx.	Peso	
Jones / tamano	para raíl (mm)	W _R	H _R	D	h	d	Р	(mm)	$\mathbf{E}_1 = \mathbf{E}_2 (\mathbf{mm})$	(mm)	(mm)	(kg/m)	
EGR15U	$M4 \times 16$	15	12,5	7,5	5,3	4,5	60	4.000	3.900	6	54	1,23	
EGR30U	M8 × 25	28	23,0	14,0	12,0	9,0	80	4.000	3.920	9	71	4,23	

- 1. La tolerancia para E es de +0,5 a -1 mm para los raíles estándar y de 0 a -0,3 mm para las juntas.
- 2. Si no se indican las dimensiones $E_{1/2}$, el número máximo posible de agujeros de montaje se determinará teniendo en cuenta $E_{1/2}$ min.
- 3. Los raíles se acortan a la longitud requerida. Si no se indican las dimensiones $E_{1/2}$, éstas se realizarán simétricamente.

DIMENSIONES DE EGR T




Tabla 3.31 DIMENSIONES DEL RAÍL EGR_T

Series / tamaño –		Dimens	iones del r	aíl (mm)		Longitud máx.	Longitud máx.	E _{1/2} mín.	E _{1/2} máx.	Peso
Series/taillallo	W _R	H _R	S	h	Р	(mm)	$\mathbf{E}_1 = \mathbf{E}_2 (\mathbf{mm})$	(mm)	(mm)	(kg/m)
EGR15T	15	12,5	M5	7	60	4.000	3.900	6	54	1,26
EGR20T	20	15,5	M6	9	60	4.000	3.900	7	53	2,15
EGR25T	23	18,0	M6	10	60	4.000	3.900	8	52	2,79
EGR30T	28	23,0	M8	14	80	4.000	3.920	9	71	4,42
EGR35T	34	27,5	M8	17	80	4.000	3.920	9	71	6,34

- 1. La tolerancia para E es de +0,5 a -1 mm para los raíles estándar y de 0 a -0,3 mm para las juntas.
- **2.** Si no se indican las dimensiones $E_{1/2}$, el número máximo posible de agujeros de montaje se determinará teniendo en cuenta $E_{1/2}$ min.
- 3. Los raíles se acortan a la longitud requerida. Si no se indican las dimensiones $E_{1/2}$, éstas se realizarán simétricamente.

CÁLCULO DE LA LONGITUD DE LOS RAÍLES

HIWIN ofrece raíles en longitudes personalizadas. Para evitar el riesgo de que el extremo del raíl se vuelva inestable, el valor E no debe superar la mitad de la distancia entre los agujeros de montaje (P). Al mismo tiempo, el valor $E_{1/2}$ debe estar entre $E_{1/2}$ mín. y $E_{1/2}$ máx. para que el agujero de montaje no se rompa.

F 3.4
$$L = (n-1) \times P + E_1 + E_2$$

- L Longitud total del raíl (mm)
- N° de agujeros de montaje
- P Distancia entre dos agujeros de montaje (mm)
- **E**_{1/2} Distancia desde el centro del último agujero de montaje hasta el extremo del raíl (mm)

PARES DE APRIETE PARA TORNILLOS DE MONTAJE

Un apriete insuficiente de los tornillos de montaje compromete en gran medida la precisión de la guía lineal; se recomiendan los siguientes pares de apriete para los tamaños de tornillo correspondientes

Tabla 3.32 PARES DE APRIETE DE LOS TORNILLOS DE MONTAJE SEGÚN ISO 4762-12.9

Series / tamaño	Tamaño del tornillo	Par (Nm)
EG_15	M3 × 16	2
EG_15U	M4 × 16	4
EG_20	M5 × 16	9
EG_25	M6 × 20	13

Series / tamaño	Tamaño del tornillo	Par (Nm)
EG_30	M6 × 25	13
EG_30U	M8 × 25	30
EG_35	M8 × 25	30

TAPONES PARA AGUJEROS DE MONTAJE DE RAÍLES

Los tapones se utilizan para mantener los agujeros de montaje libres de virutas y suciedad. Los tapones de plástico estándar se suministran con cada raíl. Los tapones opcionales deben pedirse por separado.

Tabla 3.33 TAPONES PARA AGUJEROS DE MONTAJE DE RAÍLES

Daíl	Raíl Tornillo		Nº artículo	Ø D (mm)	Altura H (mm)	
Naii	101111110	Plástico	Latón	Acero	לוווווי) ט פ	Altura II (IIIII)
EGR15R	M3	5-001338	5-001340	-	6,0	1,2
EGR20R	M5	5-001348	5-001350	5-001352	9,5	2,2
EGR25R	M6	5-001353	5-001355	5-001357	11,0	2,5
EGR30R	M6	5-001353	5-001355	5-001357	11,0	2,5
EGR35R	M8	5-001358	5-001360	5-001362	14,0	3,3
EGR15U	M4	5-001342	5-001344	-	7,5	1,1
EGR30U	M8	5-001358	5-001360	5-001362	14,0	3,3

SISTEMAS DE JUNTAS

Hay disponibles varios sistemas de juntas para los patines HIWIN. Encontrará una visión general en la página 17. La tabla siguiente muestra la longitud total de los patines con los diferentes sistemas de juntas. Hay disponibles sistemas de juntas adecuados para estos tamaños.

Tabla 3.34 LONGITUD TOTAL DE PATINES CON DIFERENTES SISTEMAS DE JUNTAS (mm)

Series / tamaño	Longitud total L					
Series / tailiallu	22	DD	ZZ	KK		
EG_15S	40,1	44,1	41,7	45,7		
QE_15S	40,1	44,1	42,1	46,1		
EG_15C	56,8	60,8	58,4	62,4		
QE_15C	56,8	60,8	58,8	62,8		
EG_20S	50,0	54,0	51,6	55,6		
QE_20S	50,0	54,0	52,0	56,0		
EG_20C	69,1	73,1	70,7	74,7		
QE_20C	69,1	73,1	71,1	75,1		
EG_25S	59,1	63,1	61,1	65,1		
QE_25S	60,1	65,1	62,1	67,1		
EG_25C	82,6	86,6	84,6	88,6		
QE_25C	83,6	88,6	85,6	90,6		
EG_30S	69,5	73,5	71,5	75,5		
QE_30S	67,5	72,5	69,5	74,5		
EG_30C	98,1	102,1	100,1	104,1		
QE_30C	96,1	101,1	98,1	103,1		
EG_35S	75,0	79,0	78,0	82,0		
QE_35S	76,0	80,0	79,0	83,0		
EG_35C	108,0	112,0	111,0	115,0		
QE_35C	108,0	112,0	111,0	115,0		

DENOMINACIÓN DE JUEGOS DE JUNTAS

Los conjuntos de juntas se suministran siempre junto con el material de montaje, e incluyen las piezas necesarias además de la junta estándar.

FRICCIÓN

La tabla muestra la máxima resistencia de fricción de cada junta lateral. Según la configuración de juntas (SS, ZZ, DD, KK), el valor puede tener que multiplicarse. Los valores indicados se aplican a los patines sobre raíles no revestidos. En los raíles revestidos es donde se producen las fuerzas de fricción más altas.

Tabla 3.35 RESISTENCIA A LA FRICCIÓN DE JUNTAS DE UN SOLO PUNTO DE CONTACTO

Series / tamaño	Fuerza de fricción (N)
EG_15	1,0
EG_20	1,0
EG_25	1,0
EG_30	1,5
EG_35	2,0

Series / tamaño	Fuerza de fricción (N)
QE_15	1,1
QE_20	1,4
QE_25	1,7
QE_30	2,1
QE_35	2,3

UNIDAD DE LUBRICACIÓN E2

Encontrará más información sobre la unidad de lubricación en la información general de la unidad de lubricación E2, en la página 11.

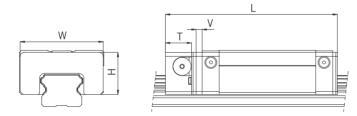


Tabla 3.36 **DIMENSIONES DEL PATÍN CON UNIDAD DE LUBRICACIÓN E2**

Modelo			D	imensiones	del patín (m	m)			Cantidad de aceite	Kilometraje ⁽²⁾ (km)
Modelo	W	Н	T	٧	L _{SS} (1)	L _{ZZ} ⁽¹⁾	L _{DD} (1)	L _{KK} (1)	(cm³)	
EG_15S	33,3	18,7	11,5	3,0	54,6	56,2	58,6	60,2	1,7	2.000
EG_15C	33,3	18,7	11,5	3,0	71,3	72,9	75,3	76,9	1,7	2.000
EG_20S	41,3	20,9	13,0	3,0	66,0	67,6	70,0	71,6	2,9	3.000
EG_20C	41,3	20,9	13,0	3,0	85,1	86,7	89,1	90,7	2,9	3.000
EG_25S	47,3	24,9	13,0	3,0	75,1	77,1	79,1	81,1	4,8	5.000
EG_25C	47,3	24,9	13,0	3,0	98,6	100,6	102,6	104,6	4,8	5.000
EG_30S	59,3	31,0	13,0	3,0	85,5	87,5	89,5	91,5	8,9	9.000
EG_30C	59,3	31,0	13,0	3,0	114,1	116,1	118,1	120,1	8,9	9.000

¹⁾ Longitud total según la protección contra el polvo seleccionada. SS = Protección contra el polvo estándar

²⁾ Kilometraje al cual el nivel del depósito de aceite debería comprobarse a más tardar

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

Las series EG y QE están disponibles en cinco clases de precisión según el paralelismo entre el patín y el raíl, la precisión de la altura H y la precisión de la anchura N. La elección de la clase de precisión está determinada por los requisitos de la máquina.

PARALELISMO

Paralelismo de las superficies tope D y B del patín y del raíl, y paralelismo de la parte superior del patín C en relación a la superficie de montaje A del raíl. Se requiere una instalación de guía lineal ideal, así como una medición en el centro del patín.

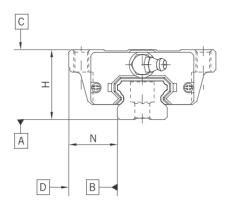


Tabla 3.37 TOLERANCIA DE PARALELISMO ENTRE PATÍN Y RAÍL (µm)

Longitud de raíl (mm)	Clase de precisión				
Longituu uo ran (mm)	C	Н	P	SP	UP
- 100	12	7	3	2	2
100 - 200	14	9	4	2	2
200 - 300	15	10	5	3	2
300 - 500	17	12	6	3	2
500 – 700	20	13	7	4	2
700 - 900	22	15	8	5	3
900 - 1100	24	16	9	6	3
1100 - 1500	26	18	11	7	4
1500 - 1900	28	20	13	8	4
1900 - 2500	31	22	15	10	5
2500 — 3100	33	25	18	11	6
3100 - 3600	36	27	20	14	7
3600 - 4000	37	28	21	15	7

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

PRECISIÓN - ALTO Y ANCHO

Tolerancia del alto H

Variación admisible de la dimensión absoluta de la altura H, medida entre el centro de las superficies roscadas C y la parte inferior del raíl A, con el patín en cualquier posición sobre el raíl.

Variación del alto H

Variación admisible de la altura H entre varios patines sobre un raíl, medida en la misma posición del raíl.

Tolerancia del ancho N

Variación admisible de la dimensión absoluta de la anchura N, medida entre el centro de las superficies roscadas D y B, con el patín en cualquier posición sobre el raíl.

Variación del ancho N

Variación admisible de la anchura N entre varios patines sobre un raíl, medida en la misma posición del raíl.

Tabla 3.38 TOLERANCIAS DEL ALTO Y DEL ANCHO DE MODELOS NO INTERCAMBIABLES (mm)

Series / tamaño	Clase de precisión	Tolerancia del alto de H	Tolerancia del ancho de N	Variación del alto de H	Variación del ancho de N
	C (Normal)	± 0,1	± 0,1	0,02	0,02
	H (Alta)	± 0,03	± 0,03	0,01	0,01
	P (Precisión)	0	0	0,006	0,006
EG_15, 20 QE_15, 20	r (riecision)	- 0,03	- 0,03	0,000	0,000
QE_15, 20	SP (Superprecisión)	0	0	0.004	0,004
	31 (Superprecision)	- 0,015	- 0,015	0,004	0,004
	UP (Ultraprecisión)	0	0	0,003	0,003
	or (ortraprecision)	-0,008	- 0,008	0,003	
	C (Normal)	± 0,1	± 0,1	0,02	0,03
	H (Alta)	± 0,04	± 0,04	0,015	0,015
	D (Dragición)	0	0	0.007	0,007
EG_25, 30, 35	P (Precisión)	- 0,04	- 0,04	0,007	
QE_25, 30, 35	CD (Cunararasisián)	0	0	0.005	0.005
	SP (Superprecisión)	- 0,02	- 0,02	0,005	0,005
	IID (IIItroprosición)	0	0	0.002	0.000
	UP (Ultraprecisión)	- 0,01	- 0,01	0,003	0,003

Tabla 3.39 TOLERANCIAS DEL ALTO Y DEL ANCHO DE MODELOS INTERCAMBIABLES (mm)

Series / tamaño	Clase de precisión	Tolerancia del alto de H	Tolerancia del ancho de N	Variación del alto de H	Variación del ancho de N
	C (Normal)	± 0,1	± 0,1	0,02	0,02
EG_15, 20 QE 15, 20	H (Alta)	± 0,03	± 0,03	0,01	0,01
42_10, 20	P (Precisión)	± 0,015	± 0,015	0,006	0,006
	C (Normal)	± 0,1	± 0,1	0,02	0,03
EG_25, 30, 35 QE 25, 30, 35	H (Alta)	± 0,04	± 0,04	0,015	0,015
	P (Precisión)	± 0,02	± 0,02	0,007	0,007

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

TOLERANCIAS ADMISIBLES DE LAS SUPERFICIES DE MONTAJE

Una vez cumplidos los requisitos relativos a la precisión de las superficies de montaje, se consiguen una buena precisión, rigidez y duración de las guías lineales de las series EG y QE.

Paralelismo de la superficie de referencia (P):

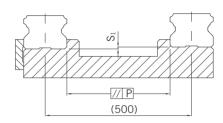


Tabla 3.40 TOLERANCIA MÁXIMA PARA EL PARALELISMO (P) (µm)

Series / tamaño	Clase de precarga				
3611637 tamanu	ZO	ZA	ZB		
EG/QE_15	25	18	-		
EG/QE_20	25	20	18		
EG/QE_25	30	22	20		
EG/QE_30	40	30	27		
EG/QE_35	50	35	30		

Tabla 3.41 TOLERANCIA MÁXIMA PARA LA ALTURA DE LA SUPERFICIE DE REFERENCIA (S₁) (μm)

Series / tamaño	Clase de precarga				
361163 / Laillallu	ZO	ZA	ZB		
EG/QE_15	130	85	-		
EG/QE_20	130	85	50		
EG/QE_25	130	85	70		
EG/QE_30	170	110	90		
EG/QE_35	210	150	120		

ALTO Y ENCAJE DE LA BANCADA

Las alturas imprecisas o irregulares de la superficie de montaje de la bancada, comprometen la precisión y pueden conducir a conflictos con el patín o los perfiles del raíl. Deben respetarse las siguientes alturas de bancada y perfiles de los bordes para evitar problemas de montaje.

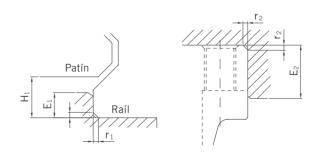
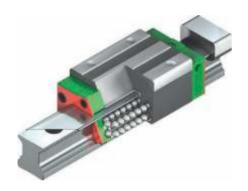


Tabla 3.42 **ALTO Y ENCAJE DE LA BANCADA** (mm)

Series / tamaño	Radio r ₁ máx. del borde	Radio r₂ máx. del borde	Altura de la bancada del borde de referencia del raíl E ₁	Altura de la bancada del borde de referencia del patín E ₂	Holgura bajo el patín H ₁
EG/QE_15	0,5	0,5	2,7	5,0	4,5
EG/QE_20	0,5	0,5	5,0	7,0	6,0
EG/QE_25	1,0	1,0	5,0	7,5	7,0
EG/QE_30	1,0	1,0	7,0	7,0	10,0
EG_35	1,0	1,0	7,5	9,5	11,0
QE_35	1,0	1,5	7,5	9,5	11,0

PROPIEDADES DE LAS GUÍAS LINEALES. SERIES CG

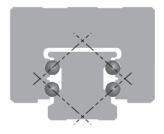

Las guías lineales HIWIN de la serie CG, con disposición en «O» de las guías de recirculación de bolas, garantizan una alta capacidad de carga de par, especialmente en la dirección Mx. La geometría de vía modificada garantiza altas capacidades de carga. El nuevo sellado flexible del extremo, se ajusta automáticamente al contorno del riel, garantizando una protección contra el polvo alta y permanente. Para proteger el sellado final contra daños mecánicos, la serie CG está equipada con un protector de chapa como estándar.

Opcionalmente, hay disponible una cinta de recubrimiento: la entrada de polvo y el desgaste del labio de sellado, se reducen permanentemente al mínimo. Con la ayuda de una herramienta de montaje, la cinta de recubrimiento se instala en unos sencillos pasos.

Para una distribución óptima del lubricante, el bloque tiene una ruta de lubricación adicional que lleva el lubricante al centro de la zona de transporte. Esto, garantiza largos intervalos de lubricación, y es una ventaja significativa, especialmente en aplicaciones de carrera corta.

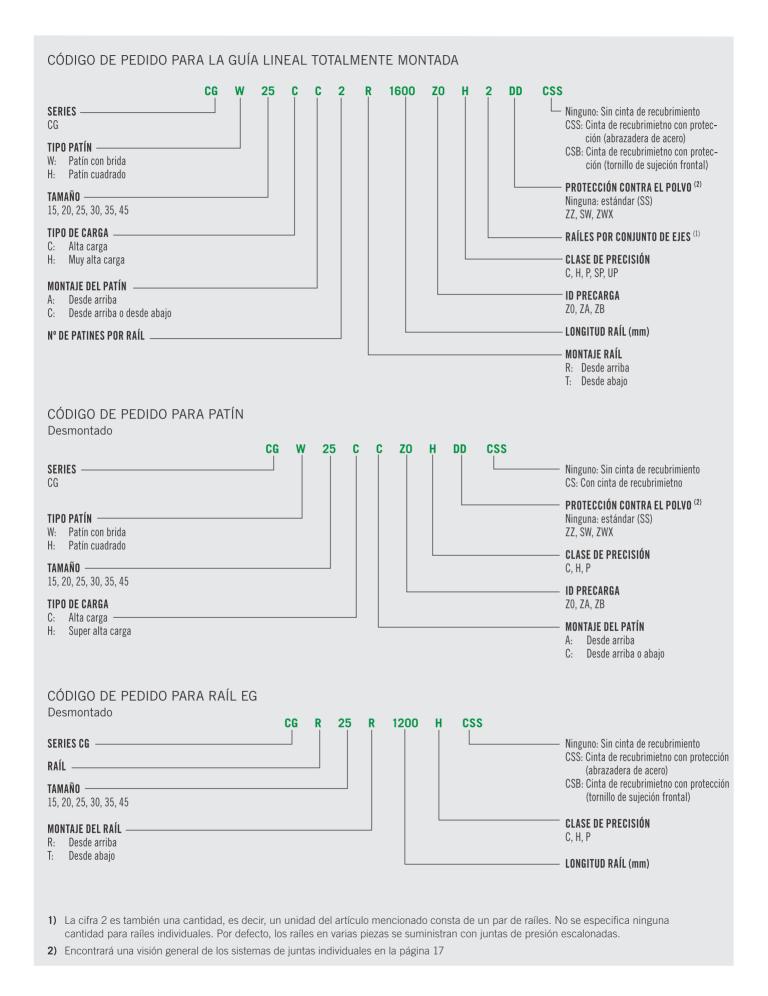
ESTRUCTURA DE LA SERIE CG

 Guía de recirculación de bolas en 4 filas, sin juego, con protección estándar contra el polvo


 Concepto de lubricación optimizado para largos intervalos de relubricación y aplicaciones de carrera corta.

 Fácil montaje. Excelente protección contra la entrada de polvo y el desgaste del sellado final, debido a la cinta de recubrimiento

• Disposición en «O» y geometría optimizada de la guía de rodamiento de bolas, para una alta capacidad de carga y de par



CÓDIGOS DE PEDIDO PARA LAS SERIES CG

En las guías lineales CG se hace una distinción entre los modelos intercambiables y los no intercambiables. Las dimensiones de ambos modelos son las mismas. La diferencia principal es que el patín y el raíl de los modelos intercambiables se pueden intercambiar libremente. El patín y el raíl pueden pedirse por separado y ser instalados por el cliente.

Su precisión se extiende a la clase P. Debido a su exigente control de precisión dimensional, los módulos intercambiables son una buena opción para los clientes que no utilizan pares de raíles sobre un eje. Las guías lineales no intercambiables siempre se suministran premontadas. Los códigos de pedido de la serie incluyen las dimensiones, el modelo, la clase de precisión, la precarga, etc.

TIPOS DE PATÍN

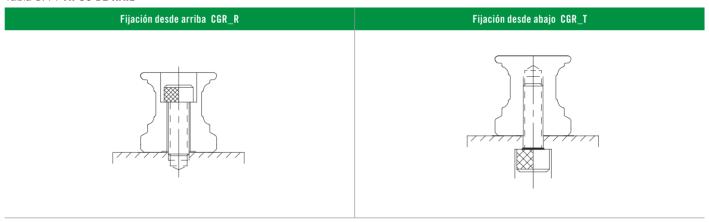
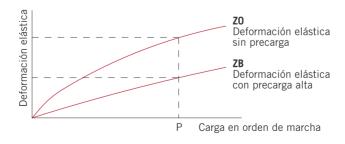

HIWIN proporciona patines cuadrados y con brida para sus guías lineales. Gracias a su baja altura y su mayor superficie de montaje, los patines con bridas son más adecuados para grandes cargas.

Tabla 3.43 TIPOS DE PATÍN

Tipo	Series / Tamaño	Estructura	Altura (mm)	Aplicación típica
Tipo cuadrado	CGH-CA CGH-HA		28 – 70	 Carpintería Centros de mecanizado Tornos CNC Rectificadoras Fresadoras de precisión
Tipo brida	CGW-CA CGW-HA		24 – 60	Máquinas de corte de alto rendimiento Tecnología de automatización Tecnología del transporte Tecnología de medición Máquinas y equipos que requieren alta precisión de posicionado

TIPOS DE RAÍL


Tabla 3.44 TIPOS DE RAÍL

PRECARGA

Definición

Cada tipo de raíl puede precargarse modificando el tamaño de las bolas. La curva muestra que la rigidez se duplica con precargas superiores. La serie CG ofrece tres clases de precarga estándar para varias aplicaciones y condiciones.

ID de precarga

Tabla 3.45 ID DE PRECARGA

ID	Precarga	Aplicación	Aplicaciones de muestra
ZO	Precarga ligera 0 — 0,02 C _{dyn}	Dirección de carga constante, poca vibración, se requiere menor precisión	 Tecnología de transporte Máquinas automáticas de envasado Ejes X-Y en maquinaria industrial Maquinaria de soldadura
ZA	Precarga media 0,05 — 0,07 C _{dyn}	Se requiere alta precisión	 Centros de mecanizado Ejes Z para maquinaria industrial Cepilladoras Tornos CNC Mesas X-Y de precisión Tecnología de medición
ZB	Precarga alta Por encima de 0,1 C _{dyn}	Se requiere alta rigidez, vibración e impacto	 Centros de mecanizado Rectificadoras Tornos CNC Fresadoras horizontales y verticales Eje Z de máquinas herramienta Cortadoras de alto rendimiento

CAPACIDADES Y PARES DE CARGA

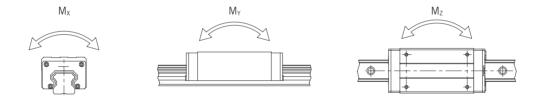


Tabla 3.46 CAPACIDADES Y PARES DE CARGA PARA LAS SERIES CG

Series / tamaño	Capacidad de carga	Capacidad de carga	Mor	nento dinámico	(Nm)	Momento estático (Nm)				
Series / talliallu	dinámica C _{dyn} (N) ⁽¹⁾	estática C ₀ (N)	M _x	M _y	M _z	M _{OX}	M _{OY}	Moz		
CG_15C	14.700	19.520	143	105	105	190	140	140		
CG_20C	23.700	30.510	287	218	218	370	280	280		
CG_20H	28.600	39.900	344	344	344	480	480	480		
CG_25C	34.960	43.940	477	390	390	600	490	490		
CG_25H	40.500	54.080	554	546	546	740	730	730		
CG_30C	46.000	55.190	792	583	583	950	700	700		
CG_30H	58.590	78.180	1.011	921	921	1.350	1.230	1.230		
CG_35C	61.170	79.300	1.334	841	841	1.730	1.090	1.090		
CG_35H	77.900	112.340	1.705	1.400	1.400	2.460	2.020	2.020		
CG_45C	98.430	112.660	3.037	2.076	2.076	3.560	2.350	2.350		
CG_45H	125.580	159.600	2.893	2.549	2.549	5.050	4.450	4.450		

¹⁾ Capacidad de carga dinámica para distancia de desplazamiento de 50.000 m

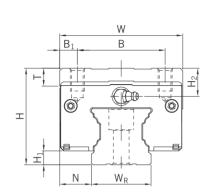
RIGIDEZ

La rigidez depende de la precarga. Puede usarse la Fórmula F 3.7 para determinar la deformación según la rigidez.

F 3.7

$$\delta = \frac{P}{K}$$

- δ Deformación (μm)
- P Carga de trabajo (N)
- **k** Rigidez (N/μm)


Tabla 3.47 **RIGIDEZ RADIAL PARA LAS SERIES CG** (Unidad: N/µm)

Clase de carga	Series / tamaño		Rigidez según la precarga	
olase ue calga	Series / taillallu	ZO	ZA	ZB
	CG_15C	240	290	330
	CG_20C	270	420	480
Alka aaraa	CG_25C	340	440	570
Alta carga	CG_30C	440	550	760
	CG_35C	470	610	800
	CG_45C	550	720	820
	CG_20H	360	470	530
	CG_25H	410	540	620
Muy alta carga	CG_30H	490	640	730
	CG_35H	570	730	840
	CG_45H	740	960	1.100

DIMENSIONES DE LOS PATINES CG

DIMENSIONES DE CGH

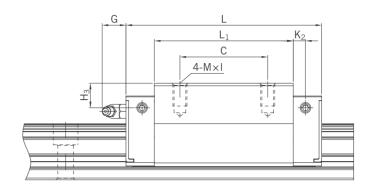
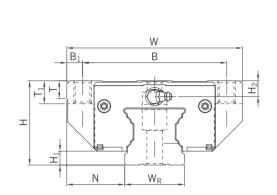


Tabla 3.48 **DIMENSIONES DEL PATÍN**


Series / tamaño		mensior alación			Dimensiones del patín (mm)											Capacidades de carga (N)		Peso (kg)
	Н	H ₁	N	W	В	B ₁	C	L ₁	L	K ₂	G	M×I	T	H ₂	H ₃	C _{dyn}	C ₀	(Ng)
CGH15CA	28	4,1	9,5	34	26	4,0	26	39,6	58,2	4,25	6,0	M4 × 6	6,0	7,8	7,8	14.700	19.520	0,15
CGH20CA	30	4.6	12,0	44	32	6.0	36	52,5	74,9	5,50	6.0	M5 × 6	8.0	3.7	3.5	23.700	30.510	0,25
CGH20HA	30	4,0	12,0	44	32	0,0	50	68,5	90,9	5,50	6,0	0 × CIVI	8,0	3,7	3,3	28.600	39.900	0,33
CGH25CA	40	6.1	12,5	48	35	6.5	35	61,0	84,0	5.00	12,0	M6 × 8	8.0	10.0	9.5	34.960	43.940	0,46
CGH25HA	40	0,1	12,5	40	33	0,0	50	78,4	101,4	5,00	12,0	INIO X 9	0,0	10,0	9,5	40.500	54.080	0,59
CGH30CA	45	7,0	16.0	60	40	10.0	40	69,0	97,4	8.70	12,0	M8 × 10	9.5	9.7	10.0	46.000	55.190	0,71
CGH30HA	45	7,0	10,0	00	40	10,0	60	91,5	119,9	0,70	12,0	IVIO X 10	9,5	9,7	10,0	58.590	78.180	0,94
CGH35CA	55	7.6	18.0	70	50	10.0	50	79,0	111,4	7.00	12.0	M8 × 13	10.2	16.0	14.0	61.170	79.300	1,24
CGH35HA	33	7,0	18,0	/0	50	10,0	72	103,4	135,8	7,00	12,0	IVIO × 13	10,2	16,0	14,0	77.900	112.340	1,62
CGH45CA	70	9.7	20,5	86	60	13,0	60	97,2	137,6	8,70	12,9	M10 ×	16,0	18,5	18.2	98.430	112.660	2,38
CGH45HA	70	9,7	20,5	00	00	13,0	80	133,6	174,0	0,70	12,9	17	10,0	16,5	16,2	125.580	159.600	3,01

Para las dimensiones del raíl, véase la pág. 60; para adaptadores de lubricación estándar y opcional, véase pág. 107.

DIMENSIONES DE LOS PATINES CG

DIMENSIONES DE CGW

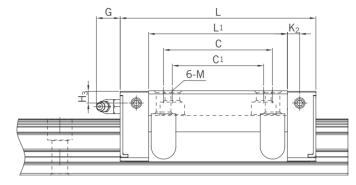
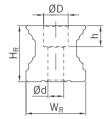


Tabla 3.49 **DIMENSIONES DEL PATÍN**


Series / tamaño		nensio Ilación			Dimensiones del patín (mm)								idades ga (N)	Peso (kg)						
	Н	H ₁	N	W	В	B ₁	C	C ₁	L ₁	L	K ₂	G	M	T		H ₂	H ₃	C _{dyn}	C ₀	(Kg)
CGW15CC	24	4,1	16,0	47	38	4,5	30	26	39,6	58,2	4,25	6,0	M5	6,0	6,5	3,8	3,8	14.700	19.520	0,14
CGW20CC	20	4.0	01.5		F 2	F 0	40	25	52,5	74,9	F F0	0.0	MC	C F	77	2.7	2.5	23.700	30.510	0,36
CGW20HC	30	4,6	21,5	63	53	5,0	40	35	68,5	90,9	5,50	6,0	M6	6,5	7,7	3,7	3,5	28.600	39.900	0,47
CGW25CC	2.0	C 1	22.5	70	F 7	, r	A.F.	40	61,0	84,0	F 00	10.0	MO	7.0	0.2			34.960	43.940	0,53
CGW25HC	36	6,1	23,5	70	57	6,5	45	40	78,4	101,4	5,00	12,0	M8	7,0	9,3	6,0	5,5	40.500	54.080	0,68
CGW30CC	40	7.0	21.0	00	72	0.0	EO	44	69,0	97,4	0.70	12.0	M10	10.5	12.0	C 7	7.0	46.000	55.190	0,90
CGW30HC	42	7,0	31,0	90	12	9,0	52	44	91,5	119,9	8,70	12,0	M10	10,5	12,0	6,7	7,0	58.590	78.180	1,19
CGW35CC	40	7.0	22.0	100	82	0.0		52	79,0	111,4	7.00	10.0	M10	10.1	10.1	0.0	7.0	61.170	79.300	1,37
CGW35HC	48	7,6	33,0	100	82	9,0	62	52	103,4	135,8	7,00	12,0	MITO	10,1	13,1	9,0	7,0	77.900	112.340	1,79
CGW45CC	CO	0.7	27.5	120	100	10.0	90	60	97,2	137,6	0.70	12.0	M10	15.1	15.0	0.5	0.1	98.430	112.660	2,45
CGW45HC	60	9,7	37,5	120	100	10,0	80	00	133,6	174,0	8,70	12,9	M12	15,1	15,0	8,5	8,1	125.580	159.600	3,00

Para las dimensiones del raíl, véase la pág. 60; para adaptadores de lubricación estándar y opcional, véase pág. 107.

DIMENSIONES DEL RAÍL CG

DIMENSIONES DE CGR_R

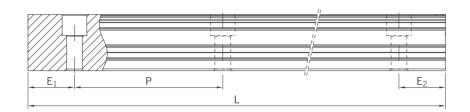
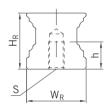



Tabla 3.50 **DIMENSIONES DEL RAÍL EGR_R**

Series / Tornillo montaje		Dimensiones del raíl (mm)							Longitud máx.	Longitud mín.	E _{1/2} mín.	E _{1/2} máx.	Peso
tamaño	para raíl (mm)	W _R	H _R	D	h	d	Р	(mm)	$\mathbf{E}_1 = \mathbf{E}_2 (\mathbf{mm})$	(mm)	(mm)	(mm)	(kg/m)
CGR15R	M4 × 20	15	16,20	7,5	5,9	4,5	60	4.000	3.900	132	6	54	1,58
CGR20R	M5 × 25	20	20,55	9,5	8,5	6,0	60	4.000	3.900	134	7	53	2,48
CGR25R	M6 × 30	23	24,25	11,0	9,0	7,0	60	4.000	3.900	136	8	52	3,38
CGR30R	M8 × 35	28	28,35	14,0	12,4	9,0	80	4.000	3.920	178	9	71	5,10
CGR35R	M8 × 40	34	31,85	14,0	12,0	9,0	80	4.000	3.920	178	9	71	7,14
CGR45R	M12 × 50	45	39,85	20,0	17,0	14,0	105	4.000	3.885	234	12	93	11,51

DIMENSIONES DE CGR_T

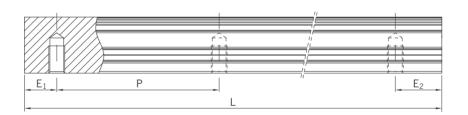
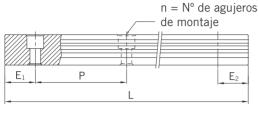


Tabla 3.51 **DIMENSIONES DEL RAÍL EGR_R**


Series /		Dimensi	ones del r	aíl (mm)		Longitud máx.	Longitud máx.	Longitud mín.	E _{1/2} mín.	E _{1/2} máx.	Peso
tamaño	W _R	H _R	S	h	P	(mm) $E_1 = E_2$ (mm)		(mm) (mm)		(mm)	(kg/m)
CGR15T	15	16,20	M5	8	60	4.000	3.900	132	6	54	1,58
CGR20T	20	20,55	M6	10	60	4.000	3.900	134	7	53	2,48
CGR25T	23	24,25	M6	12	60	4.000	3.900	136	8	52	3,38
CGR30T	28	28,35	M8	15	80	4.000	3.920	178	9	71	5,10
CGR35T	34	31,85	M8	17	80	4.000	3.920	178	9	71	7,14
CGR45T	45	39,85	M12	24	105	4.000	3.885	234	12	93	11,51

- 1. La tolerancia para E es de +0,5 a -1 mm para los raíles estándar y de 0 a -0,3 mm para las juntas.
- $\textbf{2.} \ \text{Si no se indican las dimensiones} \ E_{1/2}, \ \text{el número máximo posible de agujeros de montaje se determinará teniendo en cuenta} \ E_{1/2} \ \text{min.}$
- 3. Los raíles se acortan a la longitud requerida. Si no se indican las dimensiones $E_{1/2}$, éstas se realizarán simétricamente.

CÁLCULO DE LA LONGITUD DE LOS RAÍLES

HIWIN ofrece raíles en longitudes personalizadas. Para evitar el riesgo de que el extremo del raíl se vuelva inestable, el valor E no debe superar la mitad de la distancia entre los agujeros de montaje (P). Al mismo tiempo, el valor $E_{1/2}$ debe estar entre $E_{1/2}$ mín. y $E_{1/2}$ máx. para que el agujero de montaje no se rompa.

F 3.4 $L = (n-1) \times P + E_1 + E_2$

- L Longitud total del raíl (mm)
- n Nº de agujeros de montaje
- P Distancia entre dos agujeros de montaje (mm)

E_{1/2} Distancia desde el centro del último agujero de montaje hasta el extremo del raíl (mm)

PARES DE APRIETE PARA TORNILLOS DE MONTAJE

Un apriete insuficiente de los tornillos de montaje compromete en gran medida la precisión de la guía lineal; se recomiendan los siguientes pares de apriete para los tamaños de tornillo correspondientes

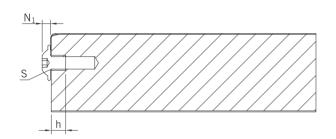
Tabla 3.52 PARES DE APRIETE DE LOS TORNILLOS DE MONTAJE SEGÚN ISO 4762-12.9

Series / tamaño	Tamaño del tornillo	Par (Nm)
CG_15	M4 × 20	4
CG_20	M5 × 25	9
CG_25	M6 × 30	14
CG_30	M8 × 35	31

Series / tamaño	Tamaño del tornillo	Par (Nm)
CG_30	M10	70
CG_35	M8 × 40	31
CG_35	M10	70
CG_45	M12 × 50	120

TAPONES PARA AGUJEROS DE MONTAJE DE RAÍLES

Los tapones se utilizan para mantener los agujeros de montaje libres de virutas y suciedad. Los tapones de plástico estándar se suministran con cada raíl. Los tapones opcionales deben pedirse por separado.


Tabla 3.53 TAPONES PARA AGUJEROS DE MONTAJE DE RAÍLES

Raíl	Tornillo		Nº artículo	Ø D (mm)	Altura H (mm)	
Kali	101111110	Plástico Latón Acero		Acero		
CGR15R	M4	5-002218	5-001344	_	7,5	1,2
CGR20R	M5	5-002220	5-001350	5-001352	9,5	2,5
CGR25R	M6	5-002221	5-001355	5-001357	11,0	2,8
CGR30R	M8	5-002222	5-001360	5-001362	14,0	3,5
CGR35R	M8	5-002222	5-001360	5-001362	14,0	3,5
CGR45R	M12	5-002223	5-001324	5-001327	20,0	4,0

CINTA DE RECUBRIMIENTO PARA PROTECCIÓN

PROTECCIÓN CON TORNILLO DE SUJECIÓN FRONTAL

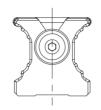
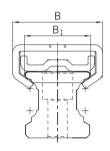



Tabla 3.54 DIMENSIONES DE LA PROTECCIÓN CON TORNILLO DE SUJECIÓN FRONTAL

Series / tamaño	S (mm)	H (mm)	N ₁ (mm)
CG_15	M3	5	1,65
CG_20	M4	5	2,20
CG_25	M4	5	2,20
CG_30	M4	5	2,20
CG_35	M6	9	3,30
CG_45	M6	9	3,30

PROTECCIÓN DE ABRAZADERA DE ACERO

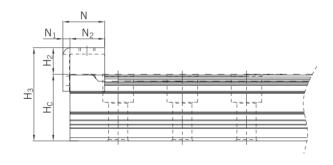


Tabla 3.55 **DIMENSIONES DE PROTECCIÓN DE ABRAZADERA DE ACERO**

Series / tamaño	H ₁ (mm)	H _C (mm)	H ₂ (mm)	N	N ₁ (mm)	N ₂ (mm)	B (mm)	B ₁ (mm)
CG_15	20,09	16,70	3,9	15	2,2	12,8	21,0	15,8
CG_20	29,05	20,75	8,3	13	2,2	10,8	28,0	20,7
CG_25	34,42	24,45	10,0	15	2,2	12,8	30,6	23,9
CG_30	37,80	28,55	9,3	12	2,2	9,8	34,0	28,9
CG_35	43,20	30,40	13,0	18	2,2	15,8	35,4	34,8
CG_45	52,66	39,85	13,7	18	2,2	15,8	53,6	45,6

SISTEMAS DE JUNTAS

Hay disponibles varios sistemas de juntas para los patines HIWIN. Encontrará una visión general en la página 17. La tabla siguiente muestra la longitud total de los patines con los diferentes sistemas de juntas. Hay disponibles sistemas de juntas adecuados para estos tamaños.

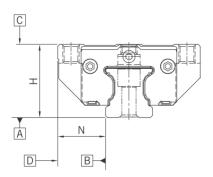


Tabla 3.56 LONGITUD TOTAL DE PATINES CON DIFERENTES SISTEMAS DE JUNTAS (mm)

Series / tamaño	Longitud total L							
Series / tainanu	SS	ZZ	SW	ZWX				
CG15C	58.2	61.2	63.2	66.2				
CG20C	74.9	77.9	79.9	82.9				
CG20H	90.9	93.9	95.9	98.9				
CG25C	84.0	90.0	89.0	95.0				
CG25H	101.4	107.4	106.4	112.4				
CG30C	97.4	103.4	102.8	108.8				
CG30H	119.9	125.9	125.3	131.3				
CG35C	111.4	117.4	116.8	122.8				
CG35H	135.8	141.8	141.2	147.2				
CG45C	137.6	143.6	143.0	149.0				
CG45H	172.3	178.3	177.7	183.7				

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

Las series EG y QE están disponibles en cinco clases de precisión según el paralelismo entre el patín y el raíl, la precisión de la altura H y la precisión de la anchura N. La elección de la clase de precisión está determinada por los requisitos de la máquina.

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

PARALELISMO

Paralelismo de las superficies tope D y B del patín y del raíl, y paralelismo de la parte superior del patín C en relación a la superficie de montaje A del raíl. Se requiere una instalación de guía lineal ideal, así como una medición en el centro del patín.

Tabla 3.57 TOLERANCIA DE PARALELISMO ENTRE PATÍN Y RAÍL (µm)

Longitud de raíl (mm)	Clase de precisión							
Longituu ue ran (iiiii)	C	Н	P	SP	UP			
-100	12	7	3	2	2			
100 - 200	14	9	4	2	2			
200 – 300	15	10	5	3	2			
300 - 500	17	12	6	3	2			
500 – 700	20	13	7	4	2			
700 - 900	22	15	8	5	3			
900 - 1100	24	16	9	6	3			
1100 - 1500	26	18	11	7	4			
1500 — 1900	28	20	13	8	4			
1900 - 2500	31	22	15	10	5			
2500 — 3100	33	25	18	11	6			
3100 - 3600	36	27	20	14	7			
3600 – 4000	37	28	21	15	7			

PRECISIÓN - ALTO Y ANCHO

Tolerancia del alto H

Variación admisible de la dimensión absoluta de la altura H, medida entre el centro de las superficies roscadas C y la parte inferior del raíl A, con el patín en cualquier posición sobre el raíl.

Variación del alto H

Variación admisible de la altura H entre varios patines sobre un raíl, medida en la misma posición del raíl.

Tolerancia del ancho N

Variación admisible de la dimensión absoluta de la anchura N, medida entre el centro de las superficies roscadas D y B, con el patín en cualquier posición sobre el raíl.

Variación del ancho N

Variación admisible de la anchura N entre varios patines sobre un raíl, medida en la misma posición del raíl.

Tabla 3.58 TOLERANCIAS DEL ALTO Y DEL ANCHO DE MODELOS NO INTERCAMBIABLES (mm)

Series / tamaño	Clase de precisión	Tolerancia del alto de H (Th)	Tolerancia del ancho de N	Variación del alto de H	Variación del ancho de N
	C (Normal)	± 0,1	± 0,1	0,02	0,02
	H (Alta)	± 0,03	± 0,03	0,01	0,01
CG_15, 20	P (Precisión)	$0/-0.03^{(1)} \pm 0.015^{(2)}$	$0/-0.031) \pm 0.015^{(2)}$	0,006	0,006
	SP (Superprecisión)	0/- 0,015	0/- 0,015	0,004	0,004
	UP (Ultraprecisión)	0/0,008	0/- 0,008	0,003	0,003
	C (Normal)	± 0,1	± 0,1	0,02	0,03
	H (Alta)	± 0,04	± 0,04	0,015	0,015
CG_25, 30, 35	P (Precisión)	$0/-0.04^{(1)} \pm 0.02^{(2)}$	$0/-0.041) \pm 0.02^{(2)}$	0,007	0,007
	SP (Superprecisión)	0/- 0,02	0/- 0,02	0,005	0,005
	UP (Ultraprecisión)	0/- 0,01	0/- 0,01	0,003	0,003
	C (Normal)	± 0,1	± 0,1	0,03	0,03
	H (Alta)	± 0,05	± 0,05	0,015	0,02
CG_45	P (Precisión)	$0/-0.05^{(1)} \pm 0.025^{(2)}$	$0/-0.051) \pm 0.025^{(2)}$	0,007	0,01
	SP (Superprecisión)	0/- 0,03	0/- 0,03	0,005	0,007
	UP (Ultraprecisión)	0/- 0,02	0/- 0,02	0,003	0,005

⁽¹⁾ Guía lineal completamente ensamblada

⁽²⁾ guía lineal desmontada

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

TOLERANCIAS ADMISIBLES DE LAS SUPERFICIES DE MONTAJE

Una vez cumplidos los requisitos relativos a la precisión de las superficies de montaje, se consiguen una buena precisión, rigidez y duración de las guías lineales de las series EG y QE.

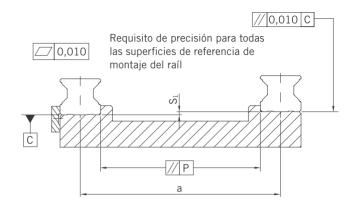


Tabla 3.59 TOLERANCIA MÁXIMA PARA EL PARALELISMO (P) (µm)

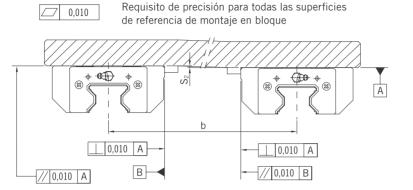
Series / tamaño	Clase de precarga				
Series / tamano	ZO	ZA	ZB		
CG_15	9	5	4		
CG_20	11	7	5		
CG_25	12	8	6		
CG_30	14	9	7		
CG_35	15	11	8		
CG_45	19	12	10		

TOLERANCIA PARA LA ALTURA DE LA SUPERFICIE DE REFERENCIA (S1)

 $F 3.9 S_1 = A \times P - T_H$

- \$₁ Máxima tolerancia de altura (mm)
- a Distancia entre raíles (mm)
- K Coeficiente de tolerancia a la altura
- T_H Tolerancia de altura H. Véase la tabla 3.58

Tabla 3.60 Tolerancia máxima para la altura de la superficie de referencia (S₁) (μm)

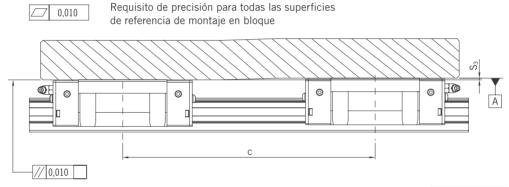

Series / tamaño	Clase de precarga				
Series / Lamanu	Z0	ZA	ZB		
CG_15 - CG_45	2.8×10^{-4}	1.7×10^{-4}	1.2×10^{-4}		

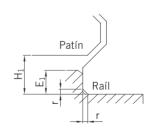
Nota: Si S1<0, seleccione otra clase de tolerancia.

TOLERANCIA DE ALTURA DE LA SUPERFICIE DE MONTAJE DEL BLOQUE

• Tolerancia de altura de la superficie de referencia en el uso paralelo de dos o más bloques (S₂)

- F 3.10 $S_2 = b \times K$
- \$2 Máxima tolerancia de altura (mm)
- **b** Distancia entre patines (mm)
- Coeficiente de tolerancia a la altura
- Tolerancia de altura de la superficie de referencia en el uso paralelo de dos o más bloques (S3)




Tabla 3.61 COEFICIENTE DE TOLERANCIA DE ALTURA (K)

Series / tamaño	Clase de carga		
Series / tamano	CG_C	CG_H	
CG_15 - CG_45	4.2×10^{-5}	3.0×10^{-5}	

- F 3.11 $S_3 = c \times K$
- \$3 Máxima tolerancia de altura (mm)
- **c** Distancia entre patines (mm)
- K Coeficiente de tolerancia a la altura

ALTO Y ENCAJE DE LA BANCADA

Las alturas imprecisas o irregulares de la superficie de montaje de la bancada, comprometen la precisión y pueden conducir a conflictos con el patín o los perfiles del raíl. Deben respetarse las siguientes alturas de bancada y perfiles de los bordes para evitar problemas de montaje.

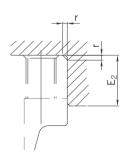
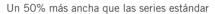


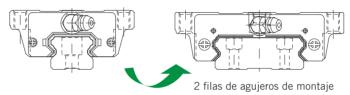
Tabla 3.62 **ALTO Y ENCAJE DE LA BANCADA** (mm)

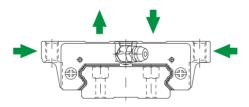
Series / tamaño	Radio r ₁ máx. del borde	Altura de la bancada del borde de referencia del raíl E ₁	Altura de la bancada del borde de referencia del patín E ₂	Holgura bajo el patín H ₁
CG_15	0,5	3,0	4,0	4,3
CG_20	0,5	3,5	5,0	4,6
CG_25	1,0	5,0	5,0	6,1
CG_30	1,0	5,0	5,0	7,0
CG_35	1,0	6,0	6,0	7,6
CG_45	1,0	8,0	8,0	9,5

PROPIEDADES DE LAS GUÍAS LINEALES, SERIE WE

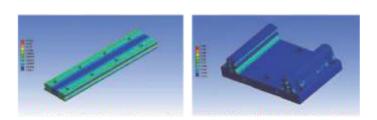
Las guías lineales HIWIN de la serie WE se basan en la probada tecnología HIWIN. Su ancho de raíl y su baja altura de montaje permiten un diseño compacto y una capacidad de carga de alto par.


ESTRUCTURA DE LA SERIE WE


- Guía de rodamientos de recirculación en 4 filas
- Ángulo de contacto de 45°
- Los collarines evitan que las bolas se salgan al sacar el patín
- Instalación de perfil bajo
- Guía lineal de mayor ancho con capacidad de carga elevada
- Mayor superficie de montaje en el patín.

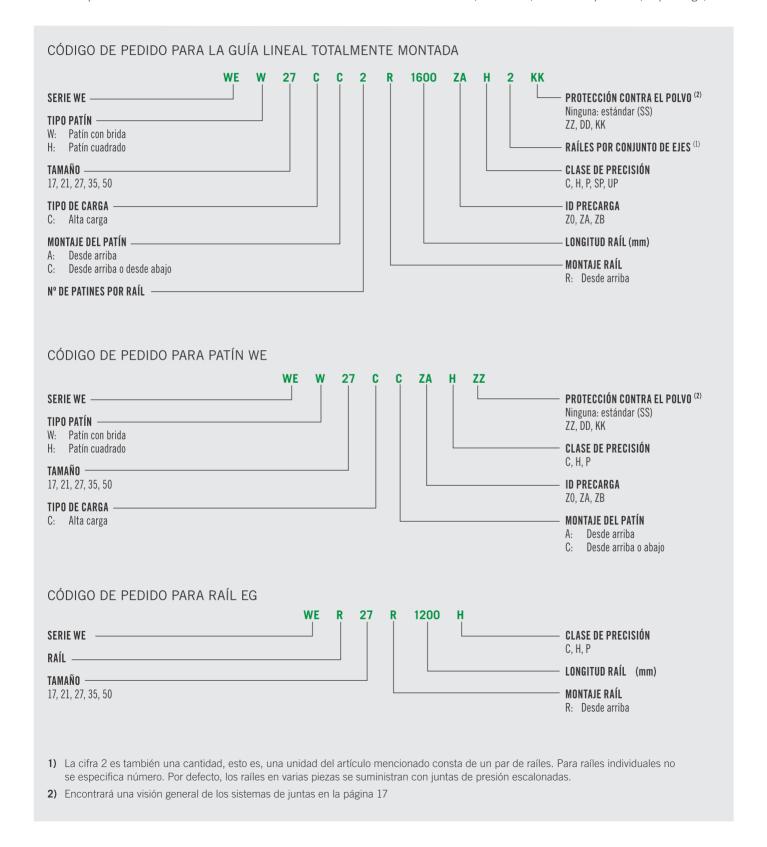

VENTAJAS:

- Diseño compacto y económico gracias a la capacidad de carga de alto par
- Alta eficiencia gracias a las bajas pérdidas por fricción



- La gran superficie de montaje del patín soporta la transferencia de pares altos
- La disposición en 45° de las trayectorias de las bolas permiten una alta carga desde cualquier dirección

Una geometría optimizada y alta capacidad de carga gracias al análisis FEM de raíl y patín



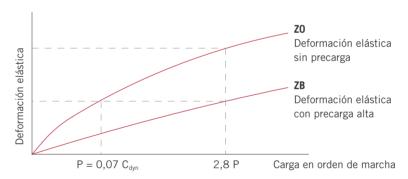
CÓDIGOS DE PEDIDO PARA LA SERIE WE

En las guías lineales WE se hace una distinción entre los modelos intercambiables y los no intercambiables. Las dimensiones de ambos modelos son las mismas. La diferencia principal es que el patín y el raíl de los modelos intercambiables se pueden intercambiar libremente. El patín y el raíl pueden pedirse por separado y ser instalados por el cliente.

Su precisión se extiende a la clase P. Debido a su exigente control de precisión dimensional, los módulos intercambiables son una buena opción para los clientes que no utilizan pares de raíles sobre un eje. Las guías lineales no intercambiables siempre se suministran premontadas. Los códigos de pedido de la serie incluyen las dimensiones, el modelo, la clase de precisión, la precarga, etc.

TIPOS DE PATÍN

HIWIN proporciona patines cuadrados y con brida para sus guías lineales. Gracias a su baja altura y su mayor superficie de montaje, los patines con bridas son más adecuados para grandes cargas.


Tabla 3.63 TIPOS DE PATÍN

Tipo	Series / Tamaño	Estructura	Altura (mm)	Long. raíl (mm)	Aplicación típica
Tipo cuadrado	WEH-CA		17-50	100-4.000	Automatización Industria de manipulación Tecnología de medición y prueba
Tipo brida	WEW-CC		17-30	100-4.000	 Tecnología de medición y prueba Industria de semiconductores Máquinas de moldeo por inyección Ejes lineales

PRECARGA

Definición

Cada tipo de raíl puede precargarse según el tamaño de las bolas. La curva muestra que la rigidez se duplica con precargas superiores. La serie WE ofrece tres clases de precarga estándar para varias aplicaciones y condiciones.

ID de precarga

Tabla 3.64 ID DE PRECARGA

ID	Precarga	Aplicación	Aplicaciones de muestra
ZO	Precarga ligera 0 — 0,02 C _{dyn}	Dirección de carga constante, bajo impacto, se requiere baja precisión	 Tecnología de transporte Máquinas automáticas de envasado Ejes X-Y en maquinaria industrial Maquinaria de soldadura
ZA	Precarga media 0,03 — 0,05 C _{dyn}	Se requiere alta precisión	 Centros de mecanizado Ejes Z para maquinaria industrial Cepilladoras Tornos CNC Mesas X-Y de precisión Tecnología de medición
ZB	Precarga alta 0,06 — 0,08 C _{dyn}	Se requiere rigidez, vibración e impacto altos	 Centros de mecanizado Rectificadoras Tornos CNC Fresadoras horizontales y verticales Eje Z de máquinas herramienta Cortadoras de alto rendimiento

CAPACIDADES Y PARES DE CARGA

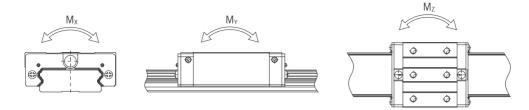


Tabla 3.65 CAPACIDADES Y PARES DE CARGA PARA LA SERIE WE

Series / tamaño	Sorios / tamaño Capacidad de carga		Momento dinámico (Nm)			Momento estático (Nm)		
Series / taillallu	dinámica C _{dyn} (N) ⁽¹⁾	estática C ₀ (N)	M _x	M _y	Mz	M _{OX}	M _{OY}	M _{oz}
WE_17C	5.230	9.640	82	34	34	150	62	62
WE_21C	7.210	13.700	122	53	53	230	100	100
WE_27C	12.400	21.600	242	98	98	420	170	170
WE_35C	29.800	49.400	893	405	405	1.480	670	670
WE_50C	61.520	97.000	2.556	1.244	1.244	4.030	1.960	1.960

¹⁾ Capacidad de carga dinámica para distancia de desplazamiento de 50.000 m

RIGIDEZ

La rigidez depende de la precarga. Puede usarse la Fórmula F 3.5 para determinar la deformación según la rigidez.

F 3.5

$$\delta = \frac{P}{K}$$

- δ Deformación (µm)
- P Carga de trabajo (N)
- **k** Rigidez (N/μm)

Tabla 3.66 **RIGIDEZ RADIAL DE LA SERIE WE** (Unidad: N/µm)

Clase de carga	Series / tamaño	Rigidez según la precarga				
Glase de Galga	Series / tailland	ZO	ZA	ZB		
	WE_17C	128	166	189		
	WE_21C	154	199	228		
Carga elevada	WE_27C	187	242	276		
	WE_35C	281	364	416		
	WE_50C	428	554	633		

DIMENSIONES DE LOS PATINES WE

DIMENSIONES DE WEH

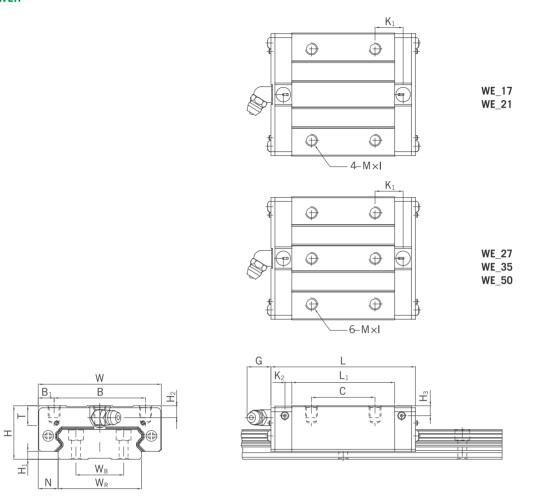
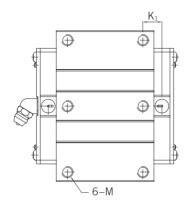
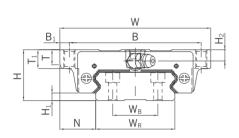


Tabla 3.67 **DIMENSIONES DEL PATÍN**


Series / tamaño	Dimensiones instalación (mm)			Dimensiones del patín (mm)														Capacidades de carga (N)	
	Н	H ₁	N	W	В	B ₁	C	L ₁	L	K ₁	K ₂	G	M×I	T	H ₂	H ₃	C _{dyn}	C ₀	(kg)
WEH17CA	17	2,5	8,5	50	29	10,5	15	35,0	50,6	-	3,10	4,9	M4 × 5	6,0	4,0	3,0	5.230	9.640	0,12
WEH21CA	21	3,0	8,5	54	31	11,5	19	41,7	59,0	14,68	3,65	12,0	M5 × 6	8,0	4,5	4,2	7.210	13.700	0,20
WEH27CA	27	4,0	10,0	62	46	8,0	32	51,8	72,8	14,15	3,50	12,0	M6 × 6	10,0	6,0	5,0	12.400	21.600	0,35
WEH35CA	35	4,0	15,5	100	76	12,0	50	77,6	102,6	18,35	5,25	12,0	M8 × 8	13,0	8,0	6,5	29.800	49.400	1,10
WEH50CA	50	7,5	20,0	130	100	15,0	65	112,0	140,0	28,05	6,00	12,9	M10 × 15	19,5	12,0	10,5	61.520	97.000	3,16


Para las dimensiones del raíl, véase la pág. 73; para adaptadores de lubricación estándar y opcional, véase pág. 107.

DIMENSIONES DE LOS PATINES WE

DIMENSIONES DE WEW

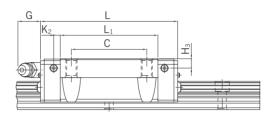


Tabla 3.68 **DIMENSIONES DEL PATÍN**

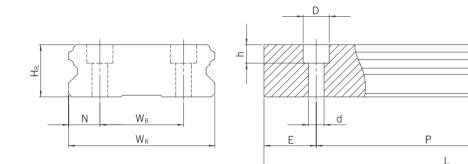
Series / tamaño	Dimensiones instalación (mm)			Dimensiones del patín (mm)														Capacidades de carga (N)		Peso
	Н	H ₁	N	W	В	B ₁	C	L ₁	L	K ₁	K ₂	G	M	Т	T ₁	H ₂	H ₃	C _{dyn}	C ₀	(kg)
WEW17CC	17	2,5	13,5	60	53	3,5	26	35,0	50,6	-	3,10	4,9	M4	5,3	6	4,0	3,0	5.230	9.640	0,13
WEW21CC	21	3,0	15,5	68	60	4,0	29	41,7	59,0	9,68	3,65	12,0	M5	7,3	8	4,5	4,2	7.210	13.700	0,23
WEW27CC	27	4,0	19,0	80	70	5,0	40	51,8	72,8	10,15	3,50	12,0	M6	8,0	10	6,0	5,0	12.400	21.600	0,43
WEW35CC	35	4,0	25,5	120	107	6,5	60	77,6	102,6	13,35	5,25	12,0	M8	11,2	14	8,0	6,5	29.800	49.400	1,26
WEW50CC	50	7,5	36,0	162	144	9,0	80	112,0	140,0	20,55	6,00	12,9	M10	14,0	18	12,0	10,5	61.520	97.000	3,71

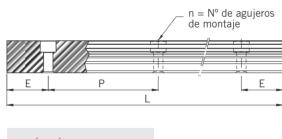
Para las dimensiones del raíl, véase la pág. 73; para adaptadores de lubricación estándar y opcional, véase pág. 107.

Ε

DIMENSIONES DEL RAÍL WE

DIMENSIONES DE WER R




Tabla 3.69 **DIMENSIONES DEL RAÍL WER_R**

Series / tamaño	maña Tornillo montaje						Longitud máx.	E _{1/2} mín.	E _{1/2} máx.	Peso		
Scries/ taillaile	para raíl (mm)	W _R	W _B	H _R	D	h	d	Р	(mm)	(mm)	(mm)	(kg/m)
WER17R	M4 × 12	33	18	9,3	7,5	5,3	4,5	40	4.000	6	34	2,2
WER21R	$M4 \times 12$	37	22	11,0	7,5	5,3	4,5	50	4.000	6	44	3,0
WER27R	$M4 \times 16$	42	24	15,0	7,5	5,3	4,5	60	4.000	6	54	4,7
WER35R	$M6 \times 20$	69	40	19,0	11,0	9,0	7,0	80	4.000	8	72	9,7
WER50R	M8 × 25	90	60	24,0	14,0	12,0	9,0	80	4.000	9	71	14,6

- 1. La tolerancia para E es de +0,5 a -1 mm para los raíles estándar y de 0 a -0,3 mm para las juntas.
- $\mathbf{2}$. Si no se indican las dimensiones $\mathbf{E}_{1/2}$, el número máximo posible de agujeros de montaje se determinará teniendo en cuenta $\mathbf{E}_{1/2}$ min.
- 3. Los raíles se acortan a la longitud requerida. Si no se indican las dimensiones E_{1/2}, éstas se realizarán simétricamente.

CÁLCULO DE LA LONGITUD DE LOS RAÍLES

HIWIN ofrece raíles en longitudes personalizadas. Para evitar el riesgo de que el extremo del raíl se vuelva inestable, el valor E no debe superar la mitad de la distancia entre los agujeros de montaje (P). Al mismo tiempo, el valor $E_{1/2}$ debe estar entre $E_{1/2}$ mín. y $E_{1/2}$ máx. para que el agujero de montaje no se rompa.

F 3.6 $L = (n-1) \times P + E_1 + E_2$

- L Longitud total del raíl (mm)
- n Nº de agujeros de montaje
- P Distancia entre dos agujeros de montaje (mm)

 ${f E_{1/2}}$ Distancia desde el centro del último agujero de montaje hasta el extremo del raíl (mm)

PARES DE APRIETE PARA TORNILLOS DE MONTAJE

Un apriete insuficiente de los tornillos de montaje compromete en gran medida la precisión de la guía lineal; se recomiendan los siguientes pares de apriete para los tamaños de tornillo correspondientes

Tabla 3.70 PARES DE APRIETE DE LOS TORNILLOS DE MONTAJE SEGÚN ISO 4762-12.9

Series / tamaño	Tamaño del tornillo	Par (Nm)
WE_17	M4	4
WE_21	M4	4
WE_27	M4	4

Series / tamaño	Tamaño del tornillo	Par (Nm)
WE_35	M6	13
WE_50	M	30

TAPONES PARA AGUJEROS DE MONTAJE DE RAÍLES

Los tapones se utilizan para mantener los agujeros de montaje libres de virutas y suciedad. Los tapones de plástico estándar se suministran con cada raíl. Los tapones opcionales deben pedirse por separado.

Tabla 3.71 TAPONES PARA AGUJEROS DE MONTAJE DE RAÍLES

Raíl	Raíl Tornillo		Nº artículo	Ø D (mm)	Altura H (mm)	
Kali	10111110	Plástico	Latón	Acero	לווווו) ע פ	Aitura II (IIIIII)
WER17R	M4	5-001342	5-001344	-	7,5	1,1
WER21R	M4	5-001342	5-001344	-	7,5	1,1
WER27R	M4	5-001342	5-001344	-	7,5	1,1
WER35R	M6	5-001353	5-001355	5-001357	11,0	2,5
WER50R	M8	5-001358	5-001360	5-001362	14,0	3,3

SISTEMAS DE JUNTAS

Hay disponibles varios sistemas de juntas para los patines HIWIN. Encontrará una visión general en la página 17. La tabla siguiente muestra la longitud total de los patines con los diferentes sistemas de juntas. Hay disponibles sistemas de juntas adecuados para estos tamaños.

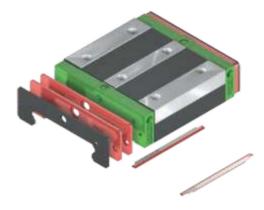


Tabla 3.72 LONGITUD TOTAL DE PATINES CON DIFERENTES SISTEMAS DE JUNTAS (mm)

Series / tamaño	Longitud total L					
3011037 tamano	\$\$	DD	ZZ	KK		
WE_17C	50,6	53,8	52,6	55,8		
WE_21C	59,0	63,0	61,0	65,0		
WE_27C	72,8	76,8	74,8	78,8		
WE_35C	102,6	106,6	105,6	109,6		
WE_50C	140,0	145,0	142,0	147,0		

DENOMINACIÓN DE JUEGOS DE JUNTAS

Los conjuntos de juntas se suministran siempre junto con el material de montaje, e incluyen las piezas necesarias además de la junta estándar.

FRICCIÓN

La tabla muestra la máxima resistencia de fricción de cada junta lateral. Según la configuración de juntas (SS, ZZ, DD, KK), el valor puede tener que multiplicarse. Los valores indicados se aplican a los patines sobre raíles no revestidos. En los raíles revestidos es donde se producen las fuerzas de fricción más altas.

Tabla 3.73 RESISTENCIA A LA FRICCIÓN DE JUNTAS DE UN SOLO PUNTO DE CONTACTO

Series / tamaño	Fuerza de fricción (N)
WE_17	12
WE_21	2,0
WE_27	2,9

Series / tamaño	Fuerza de fricción (N)
WE_35	3,9
WE_50	3,9

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

La serie WE está disponible en cinco clases de precisión según el paralelismo entre el patín y el raíl, la precisión de la altura H y la precisión de la anchura N. La elección de la clase de precisión está determinada por los requisitos de la máquina.

PARALELISMO

Paralelismo de las superficies tope D y B del patín y del raíl, y paralelismo de la parte superior del patín C en relación a la superficie de montaje A del raíl. Se requiere una instalación de guía lineal ideal, así como una medición en el centro del patín.

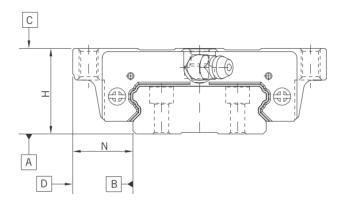


Tabla 3.74 TOLERANCIA DE PARALELISMO ENTRE PATÍN Y RAÍL (µm)

Longitud de raíl (mm)	Clase de precisión						
Longituu uo ran (mm/	C	Н	P	SP	UP		
- 100	12	7	3	2	2		
100 - 200	14	9	4	2	2		
200 - 300	15	10	5	3	2		
300 - 500	17	12	6	3	2		
500 – 700	20	13	7	4	2		
700 - 900	22	15	8	5	3		
900 - 1100	24	16	9	6	3		
1100 - 1500	26	18	11	7	4		
1500 - 1900	28	20	13	8	4		
1900 - 2500	31	22	15	10	5		
2500 — 3100	33	25	18	11	6		
3100 - 3600	36	27	20	14	7		
3600 - 4000	37	28	21	15	7		

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

PRECISIÓN - ALTO Y ANCHO

Tolerancia del alto H

Variación admisible de la dimensión absoluta de la altura H, medida entre el centro de las superficies roscadas C y la parte inferior del raíl A, con el patín en cualquier posición sobre el raíl.

Variación del alto H

Variación admisible de la altura H entre varios patines sobre un raíl, medida en la misma posición del raíl.

Tolerancia del ancho N

Variación admisible de la dimensión absoluta de la anchura N, medida entre el centro de las superficies roscadas D y B, con el patín en cualquier posición sobre el raíl.

Variación del ancho N

Variación admisible de la anchura N entre varios patines sobre un raíl, medida en la misma posición del raíl.

Tabla 3.75 TOLERANCIAS DEL ALTO Y DEL ANCHO DE MODELOS NO INTERCAMBIABLES (mm)

Series / tamaño	Clase de precisión	Tolerancia del alto de H	Tolerancia del ancho de N	Variación del alto de H	Variación del ancho de N
	C (Normal)	± 0,1	± 0,1	0,02	0,02
WE_17, 21	H (Alta)	± 0,03	± 0,03	0,01	0,01
	P (Precisión)	0	0	0,006	0,006
	r (riecision)	- 0,03	- 0,03	0,000	0,000
_ ,	SP (Superprecisión)	0	0	0.004	0,004
	31 (Superprecision)	- 0,015	- 0,015	0,004	0,004
	UP (Ultraprecisión)	0	0	0,003	0,003
	Of (Offiaprecision)	- 0,008	- 0,008	0,003	0,000
	C (Normal)	± 0,1	± 0,1	0,02	0,03
	H (Alta)	± 0,04	± 0,04	0,015	0,015
	D (D	0	0	0.007	0,007
WE_27, 35	P (Precisión)	-0,04	-0,04	0,007	0,007
,	SP (Superprecisión)	0	0	0,005	0,005
	or (ouperprecision)	- 0,02	- 0,02	0,005	
	UP (Ultraprecisión)	0	0	0,003	0,003
	or (oitraprecision)	- 0,01	- 0,01	0,003	0,003
	C (Normal)	± 0,1	± 0,1	0,03	0,03
	H (Alta)	± 0,05	± 0,05	0,02	0,02
	P (Precisión)	0	0	0,01	0,01
WE_50	1 (Trecision)	- 0,05	- 0,05	0,01	0,01
	SP (Superprecisión)	0	0	0,01	0.01
	or (ouperprecision)	- 0,03	- 0,03	0,01	0,01
	UP (Ultraprecisión)	0	0	0,01	0,01
	or (ortraprecision)	- 0,02	- 0,02	0,01	0,01

Tabla 3.76 TOLERANCIAS DEL ALTO Y DEL ANCHO DE MODELOS INTERCAMBIABLES (mm)

Series / tamaño	Clase de precisión	Tolerancia del alto de H	Tolerancia del ancho de N	Variación del alto de H	Variación del ancho de N
	C (Normal)	± 0,1	± 0,1	0,02	0,02
WE_17, 21	H (Alta)	± 0,03	± 0,03	0,01	0,01
	P (Precisión)	± 0,015	± 0,015	0,006	0,006
	C (Normal)	± 0,1	± 0,1	0,02	0,03
WE_27, 35	H (Alta)	± 0,04	± 0,04	0,015	0,015
	P (Precisión)	± 0,02	± 0,02	0,007	0,007
	C (Normal)	± 0,1	± 0,1	0,03	0,03
WE_50	H (Alta)	± 0,05	± 0,05	0,015	0,02
	P (Precisión)	± 0,025	± 0,025	0,007	0,01

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

TOLERANCIAS ADMISIBLES DE LAS SUPERFICIES DE MONTAJE

Una vez cumplidos los requisitos relativos a la precisión de las superficies de montaje, se consiguen una buena precisión, rigidez y duración de las guías lineales de la serie WE.

Paralelismo de la superficie de referencia (P):

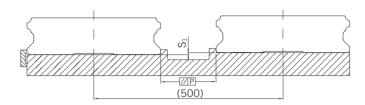


Tabla 3.77 TOLERANCIA MÁXIMA PARA EL PARALELISMO (P) (µm)

Series / tamaño	Clase de precarga					
	Z0	ZA	ZB			
WE_17	20	15	9			
WE_21	25	18	9			
WE_27	25	20	13			
WE_35	30	22	20			
WE_50	40	30	27			

Tabla 3.78 TOLERANCIA MÁXIMA PARA LA ALTURA DE LA SUPERFICIE DE REFERENCIA (S₁) (µm)

Series / tamaño	Clase de precarga				
3611637 tamanu	ZO	ZA	ZB		
WE_17	65	20	-		
WE_21	130	85	45		
WE_27	130	85	45		
WE_35	130	85	70		
WE_50	170	110	90		

ALTO Y ENCAJE DE LA BANCADA

Las alturas imprecisas o irregulares de la superficie de montaje de la bancada, comprometen la precisión y pueden conducir a conflictos con el patín o los perfiles del raíl. Deben respetarse las siguientes alturas de bancada y perfiles de los bordes para evitar problemas de montaje.

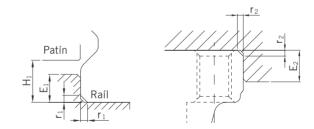


Tabla 3.79 ALTO Y ENCAJE DE LA BANCADA (mm)

Series / tamaño	Radio r ₁ máx. del borde	Radio r₂ máx. del borde	Altura de la bancada del borde de referencia del raíl E ₁	Altura de la bancada del borde de referencia del patín E ₂	Holgura bajo el patín H ₁
WE_17	0,4	0,4	2,0	4,0	2,5
WE_21	0,4	0,4	2,5	5,0	3,0
WE_27	0,5	0,4	3,0	7,0	4,0
WE_35	0,5	0,5	3,5	10,0	4,0
WE_50	0,8	0,8	6,0	10,0	7,5

PROPIEDADES DE LAS GUÍAS LINEALES, SERIE MGN

La guía lineal HIWIN de la serie MGN se basa en la probada tecnología HIWIN. El diseño del contacto en arco gótico absorbe cargas en todas las direcciones, y es particularmente rígido y preciso. Dado su diseño compacto y ligero, es particularmente adecuado para su uso en dispositivos pequeños.

ESTRUCTURA DE LA SERIE MGN

- Guía de rodamientos de recirculación en 2 filas
- Diseño de contacto en arco gótico
- Patín y bolas de acero inoxidable
- Raíles fabricados en acero estándar o inoxidable
- Diseño compacto y ligero
- Las bolas están aseguradas en el patín gracias al collarín
- Disponible engrasador para MGN15
- Junta lateral
- Junta inferior
- Hay disponibles modelos intercambiables en clases de precisión definidas

PROPIEDADES DE LAS GUÍAS LINEALES, SERIE MGW

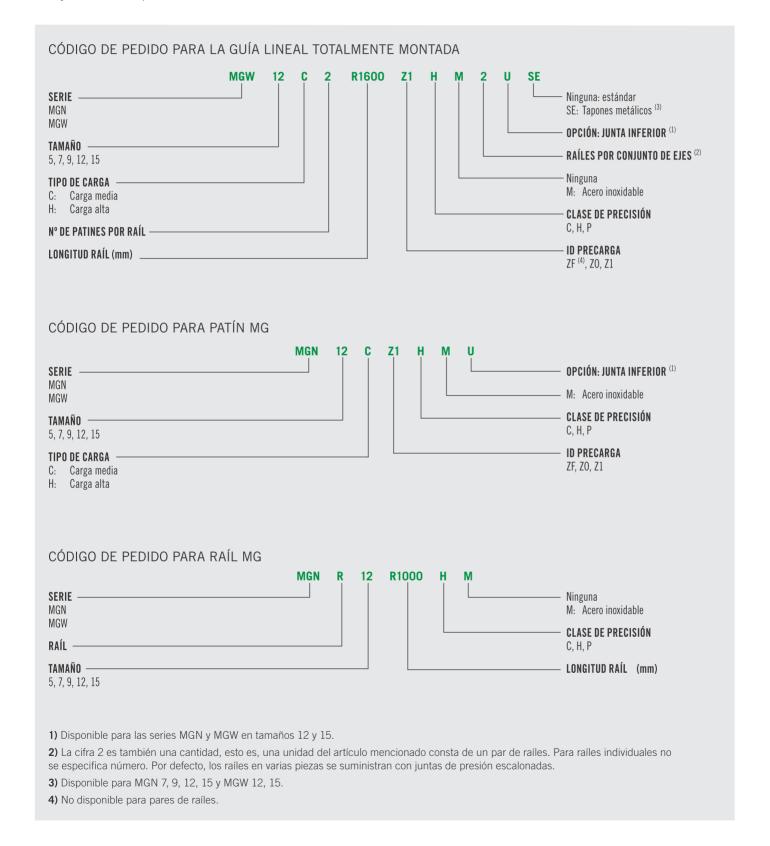
La guía lineal HIWIN de la serie MGW se basa en la probada tecnología HIWIN. El diseño del contacto en arco gótico absorbe cargas en todas las direcciones, y es particularmente rígido y preciso. La serie MGW tiene un raíl más ancho que la serie MGN, de modo que puede absorber pares de carga considerablemente superiores.

ESTRUCTURA DE LA SERIE MGW

- Guía de rodamientos de recirculación en 2 filas
- Diseño de contacto en arco gótico
- Patín y bolas de acero inoxidable
- Raíles fabricados en acero estándar o inoxidable
- Diseño compacto y ligero
- Las bolas están aseguradas en el patín gracias al collarín
- Disponible engrasador para MGW15
- Junta lateral
- Junta inferior
- Hay disponibles modelos intercambiables en clases de precisión definidas

Estructura de la serie MGW

APLICACIONES DE LA SERIE MG


Las series MGN y MGW pueden usarse en muchos sectores, por ej. en la industria de semiconductores, circuitos impresos, tecnología médica, aplicaciones robóticas, dispositivos de medición, automatización de almacenes y otros sectores que necesitan guías miniatura.

CÓDIGOS DE PEDIDO PARA LA SERIE MG

En las guías lineales MGN y MGW se hace una distinción entre los modelos intercambiables y los no intercambiables. Las dimensiones de ambos modelos son las mismas. La diferencia principal es que el patín y el raíl de los modelos intercambiables se pueden intercambiar libremente. El patín y el raíl pueden pedirse por separado y ser instalados por el cliente.

Debido a su exigente control de precisión dimensional, los módulos intercambiables son una buena opción para los clientes que no utilizan pares de raíles sobre un eje. Los códigos de pedido de la serie incluyen las dimensiones, el modelo, la clase de precisión, la precarga, etc.

PRECARGA

Las series MGN/MGW ofrecen tres clases de precarga estándar para varias aplicaciones y condiciones.

Tabla 3.80 ID DE PRECARGA

ID	Precarga	Clade de precisión
ZF	Juego leve: 4 — 10 μm	C, H
ZO	Juego cero, precarga muy ligera	C – P
Z1	Precarga ligera: 0 -0,02 C _{dyn}	C – P

CAPACIDADES Y PARES DE CARGA

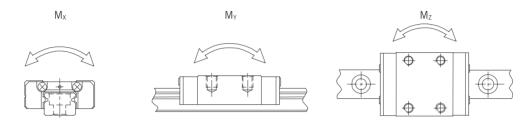


Tabla 3.81 CAPACIDADES Y PARES DE CARGA PARA LA SERIE MG

Series / tamaño	Capacidad de carga	Capacidad de carga	Мо	mento dinámico	(Nm)	Мо	mento estático ((Nm)
Series / taillallu	Capacidad de carga dinámica C _{dyn} (N) ⁽¹⁾	estática C ₀ (N)	M _x	M _y	Mz	M _{ox}	M _{oy}	M _{oz}
MGN05C	540	840	1,3	0,8	0,8	2,0	1,3	1,3
MGN05H	670	1.080	1,6	1,4	1,4	2,6	2,3	2,3
MGN07C	980	1.245	3	2	2	4,7	2,8	2,8
MGN07H	1.370	1.960	5	3	3	7,6	4,8	4,8
MGN09C	1.860	2.550	8	5	5	11,8	7,4	7,4
MGN09H	2.550	4.020	12	12	12	19,6	18,6	18,6
MGN12C	2.840	3.920	18	10	10	25,5	13,7	13,7
MGN12H	3.720	5.880	24	23	23	38,2	36,3	36,3
MGN15C	4.610	5.590	37	18	18	45,1	21,6	21,6
MGN15H	6.370	9.110	52	41	41	73,5	57,8	57,8
MGW05C	680	1.180	3,2	1,6	1,6	5,5	2,7	2,7
MGW07C	1.370	2.060	10	4	4	15,7	7,1	7,1
MGW07H	1.770	3.140	13	8	8	23,5	15,5	15,5
MGW09C	2.750	4.120	27	12	12	40,1	18,0	18,0
MGW09H	3.430	5.890	32	20	20	54,5	34,0	34,0
MGW12C	3.920	5.590	50	19	19	70,3	27,8	27,8
MGW12H	5.100	8.240	64	36	36	102,7	57,4	57,4
MGW15C	6.770	9.220	149	42	42	199,3	56,7	56,7
MGW15H	8.930	13.380	196	80	80	299,0	122,6	122,

¹⁾ Capacidad de carga dinámica para distancia de desplazamiento de 50.000 m

RIGIDEZ

La rigidez depende de la precarga. Puede usarse la Fórmula F 3.7 para determinar la deformación según la rigidez.

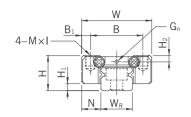
F 3.7

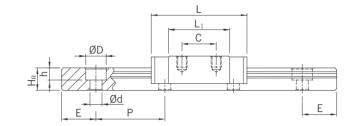
- δ Deformación (μm)
- P Carga de trabajo (N)
- **k** Rigidez (N/μm)

Tabla 3.82 **RIGIDEZ RADIAL DE LA SERIE MGN** (Unidad: $N/\mu m$)

Clase de carga	Series / tamaño	Rigidez segú	n la precarga
olast ut talga	Jones / talliand	Z0	Z1
	MGN07C	26	33
Cargo modio	MGN09C	37	48
Carga media	MGN12C	44	56
	MGN15C	57	74
	MGN07H	39	51
Corgo alta	MGN09H	56	73
Carga alta	MGN12H	63	81
	MGN15H	87	113

Tabla 3.83 **RIGIDEZ RADIAL DE LA SERIE MGW** (Unidad: N/µm)


Clase de carga	Series / tamaño	Rigidez segú	n la precarga
olase de Calga	Series / tainano	ZO	Z1
	MGW07C	38	49
Cargo modio	MGW09C	55	71
Carga media	MGW12C	63	81
	MGW15C	78	101
	MGW07H	54	70
Cargo alta	MGW09H	74	95
Carga alta	MGW12H	89	114
	MGW15H	113	145



DIMENSIONES DE LOS PATINES MG

DIMENSIONES DE MGN

MGN07, MGN09, MGN12

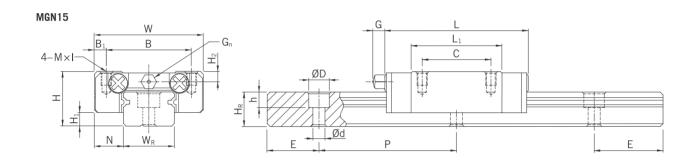
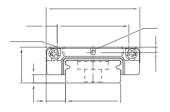
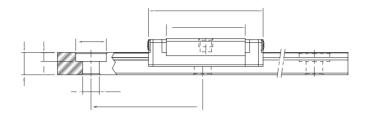


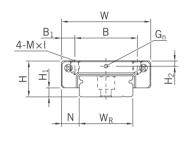
Tabla 3.84 **DIMENSIONES DEL PATÍN**

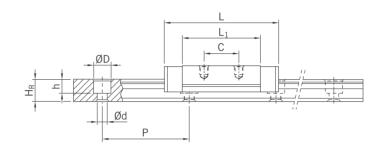
Series / tamaño		imension talación (Dime	nsiones d	el patín (ı	mm)				Capac de car	Peso	
	Н	H ₁	N	W	В	B ₁	C	L ₁	L	G	G ₁	M×I	H ₂	C _{dyn}	C _o	(kg)
MGN07C	0	1.5	г о	17	10	0.5	8	13,5	22,5		Ø 1.0	М2 2 Г	1.5	980	1.245	0,01
MGN07H	8	1,5	5,0	17	12	2,5	13	21,8	30,8	-	Ø 1,2	M2 × 2,5	1,5	1.372	1.960	0,02
MGN09C	10	2.0		20	15	0.5	10	18,9	28,9		0.1.4	M22	1.0	1.860	2.550	0,02
MGN09H	10	2,0	5,5	20	15	2,5	16	29,9	39,9	-	Ø 1,4	M3 × 3	1,8	2.550	4.020	0,03
MGN12C	10	2.0	7.5	0.7	20	2.5	15	21,7	34,7		Ø 0	M2 2 F	0.5	2.840	3.920	0,03
MGN12H	13	3,0	7,5	27	20	3,5	20	32,4	45,4	<u> </u>	Ø2	$M3 \times 3,5$	2,5	3.720	5.880	0,05
MGN15C	10	4.0	0.5	20	0.5	2.5	20	26,7	42,1	4.5	Mo	MO	2.0	4.610	5.590	0,06
MGN15H	16	4,0	8,5	32	25	3,5	25	43,4	58,8	4,5	M3	M3 × 4	3,0	6.370	9.110	0,09

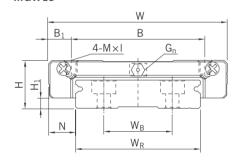

Para las dimensiones del raíl, véase la pág. 85; para adaptadores de lubricación estándar y opcional, véase pág. 107.



DIMENSIONES DE LOS PATINES MG


DIMENSIONES DE MGW


MGW05



MGW07, MGW09, MGW12

MGW15

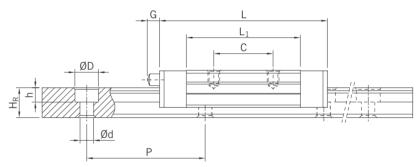


Tabla 3.85 **DIMENSIONES DEL PATÍN**

Series / tamaño		imension alación (Dimensiones del patín (mm)								Capac de cai	Peso		
	H H ₁		N	W	В	B ₁	C	L ₁	L	G	G _n	M×I	H ₂	C _{dyn}	C ₀	(kg)
MGW05C	6,5	1,5	3,5	17	13	2,0	-	14,1	20,5	-	Ø 1,2	$M2,5 \times 1,5$	1,00	680	1,180	0,02
MGW07C	0.0	1.0	F F	25	10	2.0	10	21,0	31,2		0.10	M2 2	1 05	1,370	2,060	0,02
MGW07H	9,0	1,9	5,5	25	19	3,0	19	30,8	41,0	-	Ø 1,2	M3 × 3	1,85	1,770	3,140	0,03
MGW09C	10.0	2.0		30	21	4,5	12	27,5	39,3		0.1.4	M2 2	0.40	2,750	4,120	0,04
MGW09H	12,0	2,9	6,0	30	23	3,5	24	38,5	50,7	-	Ø 1,4	M3 × 3	2,40	3,430	5,890	0,06
MGW12C	14.0	2.4	0.0	40	00	0.0	15	31,3	46,1		ď 0	M2 . 2.0	0.00	3,920	5,590	0,07
MGW12H	14,0	3,4	8,0	40	28	6,0	28	45,6	60,4	-	Ø2	M3 × 3,6	2,80	5,100	8,240	0,10
MGW15C	10.0	2.4	0.0	0.0	4.5	7.5	20	38,0	54,8	F 0	Ma	M4 4 0	2.00	6,770	9,220	0,14
MGW15H	16,0	3,4	9,0	60	45	7,5		57,0	73,8	5,2	M3	M4 × 4,2	3,20	8,930	13,380	0,22

Para las dimensiones del raíl, véase la pág. 85; para adaptadores de lubricación estándar y opcional, véase pág. 107.

DIMENSIONES DEL RAÍL MG

DIMENSIONES DE MGN_R

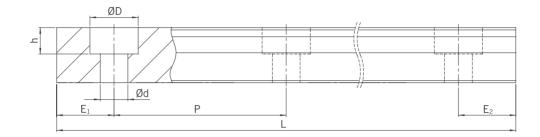
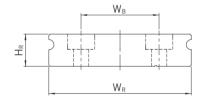



Tabla 3.86 DIMENSIONES DEL RAÍL MGN_R

Series / tamaño	Tornillo montaje		Dime	nsiones	del raí	l (mm)		Longitud máx.	Longitud máx.	E _{1/2} mín.	E _{1/2} máx.	Peso
Series / tainano	para raíl (mm)	W _R	H _R	D	h	d	P	(mm)	$\mathbf{E}_1 = \mathbf{E}_2 (\mathbf{mm})$	(mm)	(mm)	(kg/m)
MGNR05R	M2 × 8	5	3,6	3,6	0,8	2,4	15	250	225	4	11	0,15
MGNR07R	$M2 \times 6$	7	4,8	4,2	2,3	2,4	15	600	585	5	12	0,22
MGNR09R	M3 × 8	9	6,5	6,0	3,5	3,5	20	1.200	1.180	5	15	0,38
MGNR12R	$M3 \times 8$	12	8,0	6,0	4,5	3,5	25	2.000	1.975	5	20	0,65
MGNR15R	$M3 \times 10$	15	10,0	6,0	4,5	3,5	40	2.000	1.960	6	34	1,06

DIMENSIONES DE MGW_R

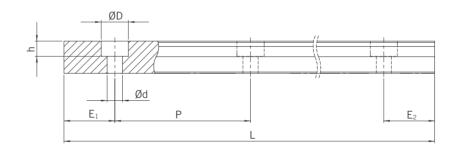
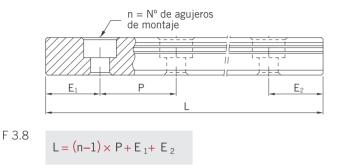


Tabla 3.87 **DIMENSIONES DEL RAÍL MGW_R**


Series / tamaño	Tornillo montaje	Dimensiones del raíl (mm)							Longitud máx.	Longitud máx.	E _{1/2} mín.	E _{1/2} máx.	Peso
ociics/ tamano	para raíl (mm)	W _R	H _R	Ws	D	h	d	Р	(mm)	$\mathbf{E}_1 = \mathbf{E}_2 (\mathbf{mm})$	(mm)	(mm)	(kg/m)
MGWR05R	M2.5 × 8	10	4,0	-	5,5	1,6	3,0	20	250	220	4	11	0,34
MGWR07R	M3 × 6	14	5,2	-	6,0	3,2	3,5	30	600	570	6	24	0,51
MGWR09R	M3 × 8	18	7,0	-	6,0	4,5	3,5	30	1.200	1.170	6	24	0,91
MGWR12R	M4 × 8	24	8,5	-	8,0	4,5	4,5	40	2.000	1.960	8	32	1,49
MGWR15R	M4 × 10	42	9,5	23	8,0	4,5	4,5	40	2.000	1.960	8	32	2,86

- 1. La tolerancia para E es de +0,5 a -1 mm para los raíles estándar y de 0 a -0,3 mm para las juntas.
- $\textbf{2.} \ \text{Si no se indican las dimensiones} \ E_{1/2}, \ \text{el número máximo posible de agujeros de montaje se determinará teniendo en cuenta} \ E_{1/2} \ \text{min.}$
- 3. Los raíles se cortan a la longitud requerida. Si no se indican las dimensiones $E_{1/2}$, éstas se realizarán simétricamente.

CÁLCULO DE LA LONGITUD DE LOS RAÍLES

HIWIN ofrece raíles en longitudes personalizadas. Para evitar el riesgo de que el extremo del raíl se vuelva inestable, el valor E no debe superar la mitad de la distancia entre los agujeros de montaje (P). Al mismo tiempo, el valor $E_{1/2}$ debe estar entre $E_{1/2}$ mín. y $E_{1/2}$ máx. para que el agujero de montaje no se rompa.

- L Longitud total del raíl (mm)
- n N° de agujeros de montaje
- P Distancia entre dos agujeros de montaje (mm)
- E_{1/2} Distancia desde el centro del último agujero de montaje hasta el extremo del raíl (mm)

PARES DE APRIETE PARA TORNILLOS DE MONTAJE

Un apriete insuficiente de los tornillos de montaje compromete en gran medida la precisión de la guía lineal; se recomiendan los siguientes pares de apriete para los tamaños de tornillo correspondientes.

Tabla 3.88 PARES DE APRIETE DE LOS TORNILLOS DE MONTAJE SEGÚN ISO 4762-12.9

Series / tamaño	Tamaño del tornillo	Par (Nm)
MGN05	M2 × 6	0,6
MGN07	M2 × 6	0.6
MGN09	M3 × 8	2
MGN12	M3 × 8	2
MGN15	$M3 \times 10$	2

Series / tamaño	Tamaño del tornillo	Par (Nm)
MGW05	M2,5 × 7	1,2
MGW07	M3 × 6	2
MGW09	M3 × 8	2
MGW12	M4 × 8	4
MGW15	M4 × 10	4

TAPONES PARA AGUJEROS DE MONTAJE DE RAÍLES

Los tapones se utilizan para mantener los agujeros de montaje libres de virutas y suciedad. Los tapones de plástico estándar se suministran con cada raíl. Los tapones opcionales deben pedirse por separado.

Tabla 3.89 TAPONES CIEGOS PARA AGUJEROS DE MONTAJE DE RAÍLES

Raíl	Tornillo	Nº a	rtículo	Ø D (mm)	Altura H (mm)
Kali	101111110	Plástico	Latón	ע פ (וווווו)	Aitui a ii (iiiiii)
MGNR09R	M3	5-0013381)	5-001340(1)	6	1,1
MGNR12R	M3	5-001338	5-001340	6	1,1
MGNR15R	M3	5-001338	5-001340	6	1,1
MGWR09R	M3	5-001338	5-001340	6	1,1
MGWR12R	M4	5-001346	-	8	1,1
MGWR15R	M4	5-001346	-	8	1,1

¹⁾ Estándar: sin tapones, hágalo constar en el pedido si es necesario. Sólo es posible con tornillos cilíndricos de cabezal bajo según DIN 7984

PROTECCIÓN CONTRA EL POLVO

Los patines de la serie MG están equipados de serie en ambos lados con una junta lateral para proteger contra la suciedad. Además, las juntas para la parte inferior del patín se pueden pedir usando el identificador "+U" en el código de pedido. Están disponibles como opciones para los tamaños 12 y 15. No se pueden montar para los tamaños 7 y 9 debido al espacio limitado de instalación H_1 . Al montar una junta inferior, la superficie de montaje lateral del raíl no debe superar H_1 .

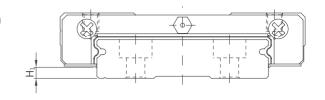


Tabla 3.90 ESPACIO DE INSTALACIÓN H₁

Series/tamaño	Junta inferior	H ₁
MGN05	-	-
MGN07	-	-
MGN09	-	-
MGN12	•	2,0
MGN15	•	3,0

Series/tamaño	Junta inferior	H ₁
MGW05	-	-
MGW07	-	-
MGW09	-	-
MGW12	•	2,6
MGW15	•	2,6

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

La serie MG está disponible en tres clases de precisión según el paralelismo entre el patín y el raíl, la precisión de la altura H y la precisión de la anchura N. La elección de la clase de precisión está determinada por los requisitos de la máquina.

PARALELISMO

Paralelismo de las superficies tope D y B del patín y del raíl, y paralelismo de la parte superior del patín C en relación a la superficie de montaje A del raíl. Se requiere una instalación de guía lineal ideal, así como una medición en el centro del patín.

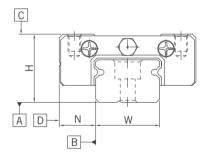


Tabla 3.91 TOLERANCIA DEL PARALELISMO ENTRE PATÍN Y RAÍL (µm)

Longitud de raíl (mm)		Clase de precisión			
Longituu ue Faii (iiiii)	C	Н	P		
- 50	12	6	2,0		
50 - 80	13	7	3,0		
80 – 125	14	8	3,5		
125 - 200	15	9	4,0		
200 - 250	16	10	5,0		
250 - 315	17	11	5,0		
315 - 400	18	11	6,0		
400 - 500	19	12	6,0		
500 - 630	20	13	7,0		
630 - 800	22	14	8,0		
800 - 1000	23	16	9,0		
1000 - 1200	25	18	11,0		
1200 - 1300	25	18	11,0		
1300 - 1400	26	19	12,0		
1400 - 1500	27	19	12,0		
1500 - 1600	28	20	13,0		
1600 - 1700	29	20	14,0		
1700 - 1800	30	21	14,0		
1800 - 1900	30	21	15,0		
1900 — 2000	31	22	15,0		

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

PRECISIÓN - ALTO Y ANCHO

Tolerancia del alto H

Variación admisible de la dimensión absoluta de la altura H, medida entre el centro de las superficies roscadas C y la parte inferior del raíl A, con el patín en cualquier posición sobre el raíl.

Variación del alto H

Variación admisible de la altura H entre varios patines sobre un raíl, medida en la misma posición del raíl.

Tolerancia del ancho N

Variación admisible de la dimensión absoluta de la anchura N, medida entre el centro de las superficies roscadas D y B, con el patín en cualquier posición sobre el raíl.

Variación del ancho N

Variación admisible de la anchura N entre varios patines sobre un raíl, medida en la misma posición del raíl.

Tabla 3.92 TOLERANCIAS DEL ALTO Y DEL ANCHO DE MODELOS NO INTERCAMBIABLES (mm)

Series / tamaño			Tolerancia del ancho de N	Variación del alto de H	Variación del ancho de N	
	C (Normal)	± 0,04	± 0,04	0,03	0,3	
$MG_05 - MG_15$	H (Alta)	± 0,02	± 0,025	0,015	0,02	
	P (Precisión)	± 0,01	± 0,015	0,007	0,01	

Tabla 3.93 TOLERANCIAS DEL ALTO Y DEL ANCHO DE MODELOS INTERCAMBIABLES (mm)

Series / tamaño	Clase de precisión	Tolerancia del alto de H	Tolerancia del ancho de N	Variación del alto de H	Variación del ancho de N	Variación del alto de H ⁽¹⁾
	C (Normal)	± 0,04	± 0,04	0,03	0,03	0,07
$MG_05 - MG_15$	H (Alta)	± 0,02	± 0,025	0,015	0,02	0,04
	P (Precisión)	± 0,01	± 0,015	0,007	0,01	0,02

¹⁾ Desviación admisible de la altura H entre varios patines sobre un par de raíles

TOLERANCIAS ADMISIBLES DE LAS SUPERFICIES DE MONTAJE

Una vez cumplidos los requisitos relativos a la precisión de las superficies de montaje, se consigue una buena precisión, rigidez y vida útil de las guías lineales de la serie MG.

Paralelismo de la superficie de referencia (P):

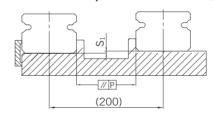


Tabla 3.94 TOLERANCIA MÁXIMA PARA EL PARALELISMO (P) (µm)

Series / tamaño	Clase de precarga				
	ZF	Z0	Z1		
MG_05	2	2	2		
MG_07	3	3	3		
MG_09	4	4	3		
MG_12	9	9	5		
MG_15	10	10	6		

Tabla 3.95 TOLERANCIA MÁXIMA DE LA ALTURA DE LA SUPERFICIE DE REFERENCIA (S1) (μm)

Series / tamaño	Clase de precarga				
SCITES / Lainailu	ZF	ZO	Z1		
MG_05	0.4×10^{-4}	0.4×10^{-4}	0.04×10^{-4}		
MG_07	0.5×10^{-4}	0.5×10^{-4}	0.06×10^{-4}		
MG_09	0.7×10^{-4}	0.7×10^{-4}	0.12×10^{-4}		
MG_12	1.0×10^{-4}	1.0×10^{-4}	0.24×10^{-4}		
MG_15	1.2×10^{-4}	1.2×10^{-4}	0.40×10^{-4}		

Tabla 3.96 REQUISITOS PARA LA SUPERFICIE DE MONTAJE

Series / tamaño	Uniformidad requerida de la superficie de montaje
MG_05	0,015/200
MG_07	0,25/200
MG_09	0,035/200
MG_12	0,050/200
MG_15	0,060/200

Nota: Los valores de la tabla son aplicables a las clases de precarga ZF y ZO. Para Z1 o si hay que montar más de un raíl sobre la misma superficie, los valores de la tabla deben como mínimo reducirse a la mitad

ALTO Y ENCAJE DE LA BANCADA

Las alturas imprecisas o irregulares de la superficie de montaje de la bancada, comprometen la precisión y pueden conducir a conflictos con el patín o los perfiles del raíl. Deben respetarse las siguientes alturas de bancada y perfiles de los bordes para evitar problemas de montaje.

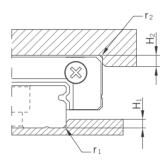


Tabla 3.97 ALTO Y ENCAJE DE LA BANCADA (mm)

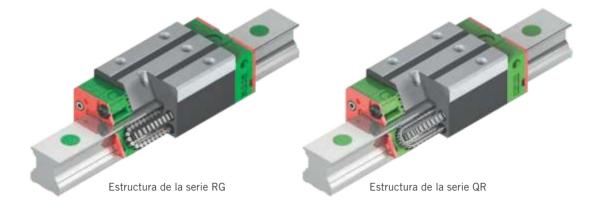
Series / tamaño	Radio r ₁ máx. del borde	Radio r ₂ máx. del borde	Altura de la bancada de H ₁	Altura de la bancada de H ₂
MGN05	0.1	0.2	1.2	2
MGN07	0,2	0,2	1,2	3
MGN09	0,2	0,3	1,7	3
MGN12	0,3	0,4	1,7	4
MGN15	0,5	0,5	2,5	5
MGW07	0,2	0,2	1,7	3
MGW09	0,3	0,3	2,5	3
MGW12	0,4	0,4	3,0	4
MGW15	0,4	0,8	3,0	5

PROPIEDADES DE LAS GUÍAS LINEALES, SERIES RGYQR

Las guías lineales HIWIN de la serie RG utilizan rodillos en lugar de bolas como elementos rodantes. La serie RG proporciona una rigidez extremadamente buena y una muy buena capacidad de carga. Está diseñada con un ángulo de contacto de 45°. Su superficie de contacto lineal reduce en gran medida la deformación de la carga producida, y por lo tanto asegura muy buenas rigidez y capacidad de carga en las 4 direcciones de carga. Las guías lineales de la serie RG son por lo tanto ideales para su uso en la fabricación de alta precisión.

Los modelos de la serie QR con tecnología SynchMotion™ ofrecen todas las ventajas de la serie estándar RG. El movimiento controlado de los rodillos a una distancia definida también da como resultado un mejor rendimiento sincrónico, velocidades de desplazamiento más fiables, intervalos de lubricación prolongados y menos ruido de funcionamiento. Puesto que las dimensiones de instalación de los patines QR son idénticas a las de los patines RG, también están montados en el raíl estándar RGR, y por lo tanto pueden intercambiarse con facilidad. Para más información, consulte la pág. 19.

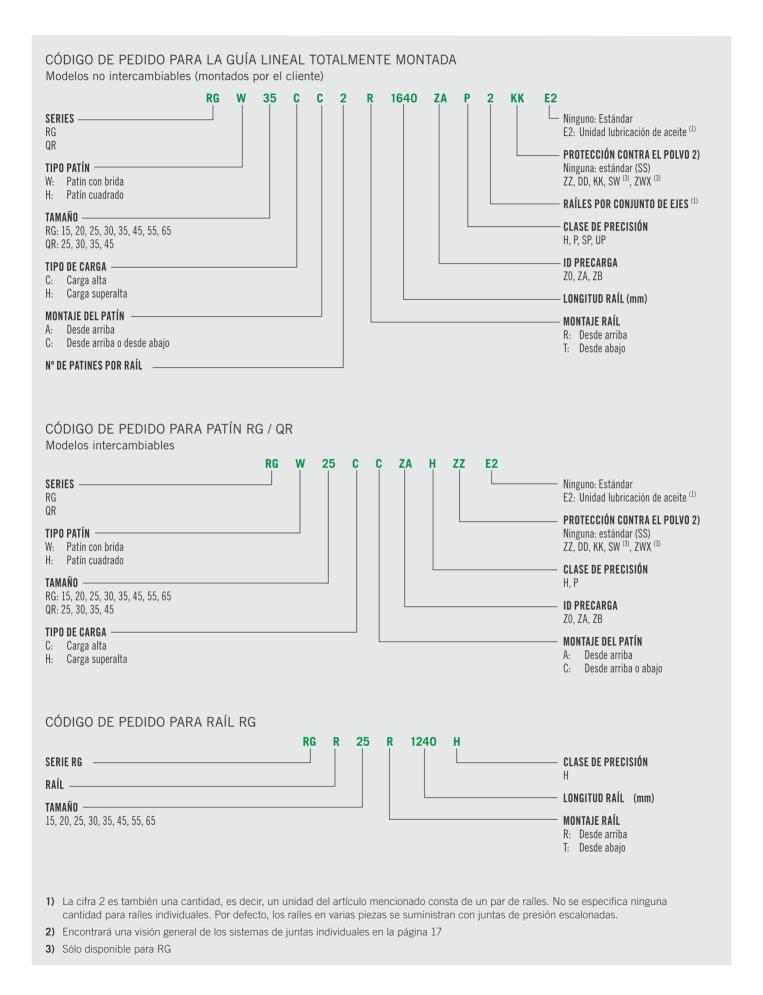
ESTRUCTURA DE LA SERIE RG/QR


- Guía de rodamientos de recirculación en 4 filas
- Ángulo de contacto de 45°
- Distintas variantes de juntas según el campo de aplicación
- 6 opciones de conexión para engrasadores y adaptador de lubricación
- Tecnología SynchMotion™ (serie QR)

VENTAJAS:

- Juego cero
- Intercambiable
- Capacidades de carga muy altas
- Rigidez muy alta
- Bajas fuerzas de desplazamiento aun con precarga alta

VENTAJAS ADICIONALES DE LA SERIE QR:


- Mejor rendimiento síncrono
- Optimizada para altas velocidades de desplazamiento
- Intervalos de lubricación más largos
- Menor rumorosidad
- Capacidades superiores de carga dinámica

CÓDIGOS DE PEDIDO PARA LAS SERIES RG / QR

Para las guías lineales RG/QR se hace una distinción entre modelos intercambiables y no intercambiables. Las dimensiones de ambos modelos son las mismas. La principal diferencia es que el patín y el raíl de los modelos intercambiables pueden intercambiarse libremente. Los códigos de pedido de la serie incluyen las dimensiones, el modelo, la clase de precisión, la precarga, etc.

TIPOS DE PATÍN

HIWIN proporciona patines cuadrados y con brida para sus guías lineales. Gracias a su baja altura y su mayor superficie de montaje, los patines con bridas son más adecuados para grandes cargas.

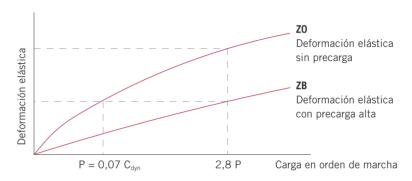
Tabla 3.98 TIPOS DE PATÍN

Tipo	Series / Tamaño	Estructura	Altura (mm)	Long. raíl (mm)	Aplicación típica
Tipo cuadrado	RGH-CA RGH-HA		00.00		 Tecnología de automatización Tecnología de transporte Centros de mecanizado CNC Cortadoras de alto rendimiento Rectificadoras CNC
Tipo brida	RGW-CC RGW-HC		28-90	24-90	 Máquinas de moldeo por inyección Fresadoras de pórtico Máquinas y sistemas que requieren alta rigidez Máquinas y sistemas que requieren alta capacidad de carga Máquinas de erosión por chispa

TIPOS DE RAÍL

Además de los raíles con fijación estándar desde arriba, HIWIN también suministra raíles para fijarlos desde abajo.

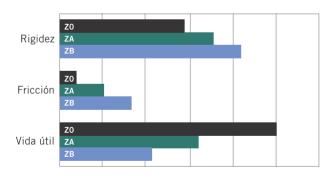
Tabla 3.99 TIPOS DE RAÍL



PRECARGA

Definición

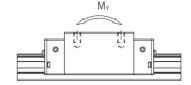
Cada tipo de raíl puede precargarse según el tamaño de las bolas. La curva muestra que la rigidez se duplica con precargas superiores. La serie RG/QR ofrece tres clases de precarga estándar para varias aplicaciones y condiciones.



ID de precarga

Tabla 3.100 ID DE PRECARGA

ID	Precarga	Aplicación
ZO	Precarga ligera 0,02 – 0,04 C _{dyn}	Dirección de carga constante, poca vibración, se requiere menor precisión
ZA	Precarga media 0,07 – 0,09 C _{dyn}	Se requiere alta precisión
ZB	Precarga alta 0,12 - 0,14 C _{dvn}	Se requiere alta rigidez, vibración e impacto


El diagrama muestra la relación entre la rigidez, la resistencia de fricción y la vida útil nominal. Para modelos más pequeños, se recomienda una precarga no superior a ZA para evitar que la vida útil se reduzca como consecuencia de la precarga.

CAPACIDADES Y PARES DE CARGA

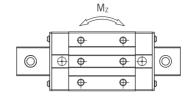


Tabla 3.101 CAPACIDADES Y PARES DE CARGA PARA LAS SERIES RG/QR

Series / tamaño	Capacidad de carga	Capacidad de carga	Mor	nento dinámico	(Nm)	Mo	mento estático	(Nm)
Series / talliallu	dinámica C _{dyn} (N) (1)	estática C ₀ (N)	M _x	M _y	Mz	M _{ox}	M _{OY}	M _{oz}
RG_15C	11.300	24.000	147	82	82	311	173	173
RG_20C	21.300	46.700	296	210	210	647	460	460
RG_20H	26.900	63.000	373	358	358	872	837	837
RG_25C	27.700	57.100	367	293	293	758	605	605
QR_25C	38.500	54.400	511	444	444	722	627	627
RG_25H	33.900	73.400	450	457	457	975	991	991
QR_25H	44.700	65.300	594	621	621	867	907	907
RG_30C	39.100	82.100	688	504	504	1.445	1.060	1.060
QR_30C	51.500	73.000	906	667	667	1.284	945	945
RG_30H	48.100	105.000	845	784	784	1.846	1.712	1.712
QR_30H	64.700	95.800	1.138	1.101	1.101	1.685	1.630	1.630
RG_35C	57.900	105.200	1.194	792	792	2.170	1.440	1.440
QR_35C	77.000	94.700	1.590	1.083	1.083	1.955	1.331	1.331
RG_35H	73.100	142.000	1.508	1.338	1.338	2.930	2.600	2.600
QR_35H	95.700	126.300	1.975	1.770	1.770	2.606	2.335	2.335
RG_45C	92.600	178.800	2.340	1.579	1.579	4.520	3.050	3.050
QR_45C	123.200	156.400	3.119	2.101	2.101	3.959	2.666	2.666
RG_45H	116.000	230.900	3.180	2.748	2.748	6.330	5.470	5.470
QR_45H	150.800	208.600	3.816	3.394	3.394	5.278	4.694	4.694
RG_55C	130.500	252.000	4.148	2.796	2.796	8.010	5.400	5.400
RG_55H	167.800	348.000	5.376	4.942	4.942	11.150	10.250	10.250
RG_65C	213.000	411.600	8.383	5.997	5.997	16.200	11.590	11.590
RG_65H	275.300	572.700	10.839	10.657	10.657	22.550	22.170	22.170

¹⁾ Capacidad de carga dinámica para distancia de desplazamiento de 100.000 m

RIGIDEZ

La rigidez depende de la precarga. Puede usarse la Fórmula F 3.10 para determinar la deformación según la rigidez.

F 3.10

$$\delta = \frac{P}{K}$$

- δ Deformación (μm)
- P Carga de trabajo (N)
- **k** Rigidez (N/μm)

Tabla 3.102 **RIGIDEZ RADIAL PARA LAS SERIES RG / QR** (Unidad: $N/\mu m$)

Olace de cours	Carrier / Armaña		Rigidez según la precarga	
Clase de carga	Series / tamaño	ZO	ZA	ZB
	RG_15C	482	504	520
	RG_20C	586	614	633
	RG_25C	682	717	740
	QR_25C	616	645	665
	RG_30C	809	849	876
0	QR_30C	694	726	748
Carga alta	RG_35C	954	1.002	1.035
	QR_35C	817	856	882
	RG_45C	1.433	1.505	1.554
	QR_45C	1.250	1.310	1.350
	RG_55C	1.515	1.591	1.643
	RG_65C	2.120	2.227	2.300
	RG_20H	786	823	848
	RG_25H	873	917	947
	QR_25H	730	770	790
	RG_30H	1.083	1.136	1.173
	QR_30H	910	950	980
Carga superalta	RG_35H	1.280	1.344	1.388
	QR_35H	1.090	1.140	1.170
	RG_45H	1.845	1.938	2.002
	QR_45H	1.590	1.660	1.720
	RG_55H	2.079	2.182	2.254
	RG_65H	2.931	3.077	3.178

DIMENSIONES DE LOS PATINES RG/QR

DIMENSIONES DE RGH/QRH

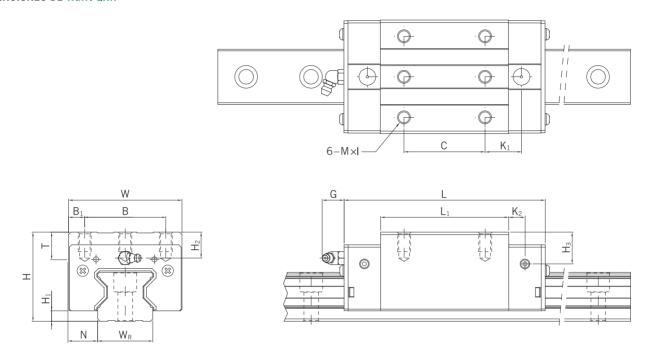


Tabla 3.103 **DIMENSIONES DEL PATÍN**

Series / tamaño		mensior alación		_				D	imensi	ones de	l patín (mm)					Capacidades de carga (N)		Peso (kg)
	Н	H ₁	N	W	В	B ₁	C	L ₁	L	K ₁	K ₂	G	M×I	T	H ₂	H ₃	C _{dyn}	C ₀	(kg)
RGH15CA	28	4,0	9,5	34	26	4,0	26	45,0	68,0	13,40	4,70	5,3	M4 × 8	6,0	7,6	10,1	11.300	24.000	0,20
RGH20CA	34	5,0	12,0	44	32	6.0	36	57,5	86,0	15,80	6.00	5.3	M5 × 8	8.0	8,3	8.3	21.300	46.700	0,40
RGH20HA	34	3,0	12,0	44	32	0,0	50	77,5	106,0	18,80	6,00	5,5	IVIOXO	0,0	0,3	0,3	26.900	63.000	0,53
RGH25CA	40	5,5	12,5	48	35	6.5	35	64,5	97,9	20,75	7.25	12.0	M6 × 8	9.5	10,2	10.0	27.700	57.100	0,61
RGH25HA	40	3,3	12,5	40	33	0,3	50	81,0	114,4	21,50	7,25	12,0	IVIOXO	9,5	10,2	10,0	33.900	73.400	0,75
QRH25CA	40	5,5	12,5	48	25	6.5	35	66,0	9,9	20,75	7,25	12.0	M6 × 8	9.5	10,2	10.0	38.500	54.400	0,60
QRH25HA	40	3,3	12,5	40	35	6,5	50	81,0	112,9	21,50	1,25	12,0	IVIO X 6	3,5	10,2	10,0	44.700	65.300	0,74
RGH30CA	45	6.0	16.0	60	40	10,0	40	71,0	109,8	23,50	8.00	12,0	M8 × 10	9,5	9,5	10,3	39.100	82.100	0,90
RGH30HA	43	0,0	10,0	00	40	10,0	60	93,0	131,8	24,50	8,00	12,0	IVIO X 10	3,3	3,3	10,3	48.100	105.000	1,16
QRH30CA	45	6.0	16.0	60	40	10.0	40	71,0	109,8	23,50	8.00	12.0	M8 × 10	9.5	9.5	10.3	51.500	73.000	0,89
QRH30HA	40	0,0	10,0	00	40	10,0	60	93,0	131,8	24,50	8,00	12,0	INIO X 10	9,0	9,5	10,3	64.700	95.800	1,15
RGH35CA	55	6.5	18.0	70	50	10.0	50	79,0	124,0	22,50	10.00	12.0	M8 × 12	12.0	16.0	19.6	57.900	105.200	1,57
RGH35HA	33	0,3	10,0	70	50	10,0	72	106,5	151,5	25,25	10,00	12,0	MO X 12	12,0	10,0	13,0	73.100	142.000	2,06
QRH35CA	55	6,5	18.0	70	50	10.0	50	79,0	124,0	22,50	10.00	12.0	M8 × 12	12.0	16.0	19.6	77.000	94.700	1,56
QRH35HA	33	0,5	10,0	70	30	10,0	72	106,5	151,5	25,25	10,00	12,0	INIO X 12	12,0	10,0	13,0	95.700	126.300	2,04
RGH45CA	70	8.0	20,5	86	60	13.0	60	106,0	153,2	31,00	10.00	12.9	M10 × 17	16.0	20.0	24,0	92.600	178.800	3,18
RGH45HA	70	0,0	20,3	00	00	13,0	80	139,8	187,0	37,90	10,00	12,3	WIIO X I7	10,0	20,0	24,0	116.000	230.900	4,13
QRH45CA	70	8,0	20,5	86	60	13,0	60	106,0	153,2	31,00	10.00	12,9	M10 × 17	16.0	20,0	24.0	123.200	156.400	3,16
QRH45HA	70	0,0	20,3	00	00	13,0	80	139,8	187,0	37,90	10,00	12,3	IVIIU X 1/	10,0	20,0	24,0	150.800	208.600	4,10
RGH55CA	80	10.0	23,5	100	75	12.5	75	125,5	183,7	37,75	12.50	12.9	M12 × 18	17.5	22.0	27.5	130.500	252.000	4,89
RGH55HA	00	10,0	23,3	100	/3	12,5	95	173,8	232,0	51,90	12,50	12,3	IVI12 X 10	17,3	22,0	21,3	167.800	348.000	6,68
RGH65CA	90	12.0	31,5	126	76	25.0	70	160,0	232,0	60,80	15.80	12.9	M16 × 20	25.0	15.0	15.0	213.000	411.600	8,89
RGH65HA	30	12,0	31,3	120	70	25,0	120	223,0	295,0	67,30	15,60	12,3	IA110 X 50	23,0	13,0	13,0	275.300	572.700	12,13

Para las dimensiones del raíl, véase la pág. 98; para adaptadores de lubricación estándar y opcional, véase pág. 107.

DIMENSIONES DE LOS PATINES RG/QR

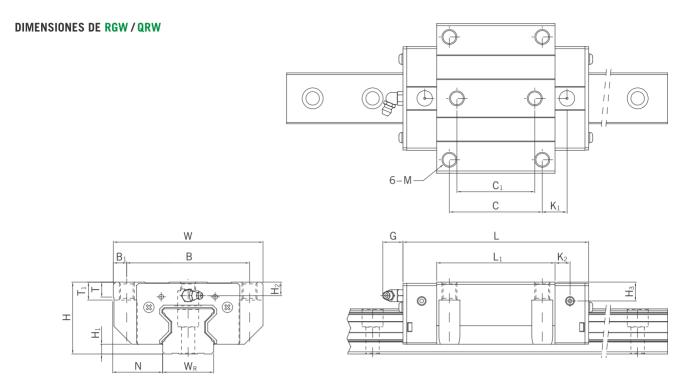
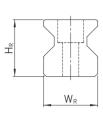


Tabla 3.104 **DIMENSIONES DEL PATÍN**

Series / tamaño		nensio Iación							D	imensio	nes del	patín (mm)						Capac de car		Peso (kg)
	Н	H ₁	N	W	В	B ₁	C	C ₁	L ₁	L	K ₁	K ₂	G	М	Т	T ₁	H ₂	H ₃	C _{dyn}	C ₀	(Kg)
RGW15CC	24	4,0	16,0	47	38	4,5	30	26	45,0	68,0	11,40	4,70	5,3	M5	6,0	7	3,6	6,1	11.300	24.000	0,22
RGW20CC	30	F 0	21.5	63	53	F 0	40	35	57,5	86,0	13,80	0.00	F 2	M6	0.0	10	4.2	4,3	21.300	46.700	0,47
RGW20HC	30	5,0	21,5	03	33	5,0	40	33	77,5	106,0	23,80	6,00	5,3	INIO	8,0	10	4,3	4,3	26.900	63.000	0,63
RGW25CC	36	5.5	22.5	70	57	6.5	45	40	64,5	97,9	15,75	7.25	10.0	M8	9,5	10		6.0	27.700	57.100	0,72
RGW25HC	30	3,3	23,5	/0	37	6,5	43	40	81,0	114,4	24,00	7,25	12,0	IVIO	9,5	10	6,2	6,0	33.900	73.400	0,91
QRW25CC	20		22.5	70	F.7	0.5	ΔГ	40	66,0	97,9	15,75	7.05	10.0	MO	0.5	10			38.500	54.400	0,71
QRW25HC	36	5,5	23,5	70	57	6,5	45	40	81,0	112,9	24,00	7,25	12,0	M8	9,5	10	6,2	6,0	44.700	65.300	0,90
RGW30CC	40		21.0		70		50		71,0	109,8	17,50	0.00	10.0	N410	0.5	10	0.5	7.0	39.100	82.100	1,16
RGW30HC	42	6,0	31,0	90	72	9,0	52	44	93,0	131,8	28,50	8,00	12,0	M10	9,5	10	6,5	7,3	48.100	105.000	1,52
QRW30CC	40	0.0	01.0	0.0	70	0.0	50		71,0	109,8	17,50	0.00	10.0	B410	0.5	10	0.5	7.0	51.500	73.000	1,15
QRW30HC	42	6,0	31,0	90	72	9,0	52	44	93,0	131,8	28,50	8,00	12,0	M10	9,5	10	6,5	7,3	64.700	95.800	1,51
RGW35CC	40	0.5	20.0	100	00		0.0		79,0	124,0	16,50	10.00	10.0		10.0	10		10.0	57.900	105.200	1,75
RGW35HC	48	6,5	33,0	100	82	9,0	62	52	106,5	151,5	30,25	10,00	12,0	M10	12,0	13	9,0	12,6	73.100	142.000	2,40
QRW35CC	40	0.5	22.0	100	00	0.0	00		79,0	124,0	16,50	10.00	10.0	M10	10.0	10	0.0	10.0	77.000	94.700	1,74
QRW35HC	48	6,5	33,0	100	82	9,0	62	52	106,5	151,5	30,25	10,00	12,0	M10	12,0	13	9,0	12,6	95.700	126.300	2,38
RGW45CC		0.0	07.5	100	100	10.0	0.0		106,0	153,2	21,00	10.00	10.0		14.0	1.5	10.0	14.0	92.600	178.800	3,43
RGW45HC	60	8,0	37,5	120	100	10,0	80	60	139,8	187,0	37,90	10,00	12,9	M12	14,0	15	10,0	14,0	116.000	230.900	4,57
QRW45CC	00	0.0	07.5	100	100	10.0	0.0	00	106,0	153,2	21,00	10.00	10.0	N#10	14.0	1.5	10.0	14.0	123.200	156.400	3,41
QRW45HC	60	8,0	37,5	120	100	10,0	80	60	139,8	187,0	37,90	10,00	12,9	M12	14,0	15	10,0	14,0	150.800	208.600	4,54
RGW55CC	70	10.0	42.5	140	110	10.0	0.5	70	125,5	183,7	27,75	10.50	10.0	N41.4	10.0	17	10.0	17.5	130.500	252.000	5,43
RGW55HC	70	10,0	43,5	140	116	12,0	95	70	173,8	232,0	51,90	12,50	12,9	M14	16,0	17	12,0	17,5	167.800	348.000	7,61
RGW65CC	00	10.0	F2 F	170	140	14.0	110	00	160,0	232,0	40,80	15.00	10.0	M1C	00.0	00	15.0	15.0	213.000	411.600	11,63
RGW65HC	90	12,0	53,5	170	142	14,0	110	82	223,0	295,0	72,30	15,80	12,9	M16	22,0	23	15,0	15,0	275.300	572.700	16,58


Para las dimensiones del raíl, véase la pág. 98; para adaptadores de lubricación estándar y opcional, véase pág. 107.

DIMENSIONES DEL RAÍL RG

Los raíles RG se usan tanto para los patines RG como para los QR

DIMENSIONES DE RGR_R

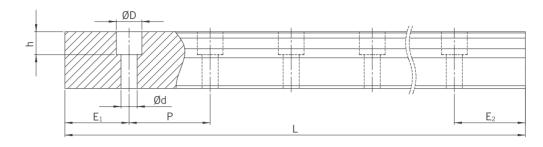
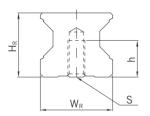



Tabla 3.105 **DIMENSIONES DEL RAÍL RGR_R**

Series / tamaño	Tornillo montaje	Dimensiones del raíl (mm)						Longitud máx.	Longitud máx.	E _{1/2} mín.	E _{1/2} máx.	Peso
ocrics / tamano	para raíl (mm)	W _R	H _R	D	h	d	Р	(mm)	$\mathbf{E}_1 = \mathbf{E}_2 (\mathbf{mm})$	(mm)	(mm)	(kg/m)
RGR15R	$M4 \times 16$	15	16,5	7,5	5,7	4,5	30,0	4.000	3.960.0	6	24,0	1,70
RGR20R	$M5 \times 20$	20	21,0	9,5	8,5	6,0	30,0	4.000	3.960.0	7	23,0	2,66
RGR25R	M6 × 20	23	23,6	11,0	9,0	7,0	30,0	4.000	3.960.0	8	22,0	3,08
RGR30R	$M8 \times 25$	28	28,0	14,0	12,0	9,0	40,0	4.000	3.920.0	9	31,0	4,41
RGR35R	M8 × 25	34	30,2	14,0	12,0	9,0	40,0	4.000	3.920.0	9	31,0	6,06
RGR45R	$M12 \times 35$	45	38,0	20,0	17,0	14,0	52,5	4.000	3.937.5	12	40,5	9,97
RGR55R	$M14 \times 45$	53	44,0	23,0	20,0	16,0	60,0	4.000	3.900.0	14	46,0	13,98
RGR65R	$M16 \times 50$	63	53,0	26,0	22,0	18,0	75,0	4.000	3.900.0	15	60,0	20,22

DIMENSIONES DE RGR_T (montaje del raíl desde abajo)

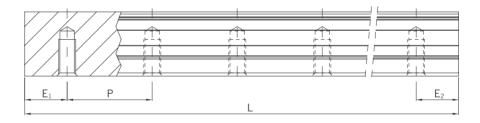
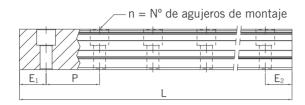


Tabla 3.106 **DIMENSIONES DEL RAÍL RGR_T**

Series / tamaño		Dimensi	ones del i	raíl (mm)		Longitud máx.	Longitud máx.	E _{1/2} mín.	E _{1/2} máx.	Peso	
Series / Laillallu	W _R	H _R	S	h	Р	(mm)	$\mathbf{E}_1 = \mathbf{E}_2 (\mathbf{mm})$	(mm)	(mm)	(kg/m)	
RGR15T	15	16,5	M5	8,0	30,0	4.000	3.960,0	6	24,0	1,86	
RGR20T	20	21,0	M6	10,0	30,0	4.000	3.960,0	7	23,0	2,76	
RGR25T	23	23,6	M6	12,0	30,0	4.000	3.960,0	8	22,0	3,36	
RGR30T	28	28,0	M8	15,0	40,0	4.000	3.920,0	9	31,0	4,82	
RGR35T	34	30,2	M8	17,0	40,0	4.000	3.920,0	9	31,0	6,48	
RGR45T	45	38,0	M12	24,0	52,5	4.000	3.937,5	12	40,5	10,83	
RGR55T	53	44,0	M14	24,0	60,0	4.000	3.900,0	14	46,0	15,15	
RGR65T	63	53,0	M20*	30,0	75,0	4.000	3.900,0	15	60,0	21,24	

^{*} Desviación desde DIN 645

^{1.} La tolerancia para E es de +0,5 a -1 mm para los raíles estándar y de 0 a -0,3 mm para las juntas.


^{2.} Si no se indican las dimensiones $E_{1/2}$, el número máximo posible de agujeros de montaje se determinará teniendo en cuenta $E_{1/2}$ min.

 $[\]bf 3.$ Los raíles se acortan a la longitud requerida. Si no se indican las dimensiones $E_{1/2}$, éstas se realizarán simétricamente.

CÁLCULO DE LA LONGITUD DE LOS RAÍLES

HIWIN ofrece raíles en longitudes personalizadas. Para evitar el riesgo de que el extremo del raíl se vuelva inestable, el valor E no debe superar la mitad de la distancia entre los agujeros de montaje (P). Al mismo tiempo, el valor $E_{1/2}$ debe estar entre $E_{1/2}$ mín. y $E_{1/2}$ máx. para que el agujero de montaje no se rompa.

F 3.4 $L = (n-1) \times P + E_1 + E_2$

- L Longitud total del raíl (mm)
- n Nº de agujeros de montaje
- P Distancia entre dos agujeros de montaje (mm)

E_{1/2} Distancia desde el centro del último agujero de montaje hasta el extremo del raíl (mm)

PARES DE APRIETE PARA TORNILLOS DE MONTAJE

Un apriete insuficiente de los tornillos de montaje compromete en gran medida la precisión de la guía lineal; se recomiendan los siguientes pares de apriete para los tamaños de tornillo correspondientes.

Tabla 3.107 PARES DE APRIETE DE LOS TORNILLOS DE MONTAJE SEGÚN ISO 4762-12.9

Series / tamaño	Tamaño del tornillo	Par (Nm)
RG_15	M4 × 16	4
RG_20	M5 × 20	9
RG_25	M6 × 20	14
RG_30	M8 × 25	31

Series / tamaño	Tamaño del tornillo	Par (Nm)
RG_35	M8 × 25	31
RG_45	M12 × 35	120
RG_55	M14 × 45	160
RG_65	M16 × 50	200

TAPONES PARA AGUJEROS DE MONTAJE DE RAÍLES

Los tapones se utilizan para mantener los agujeros de montaje libres de virutas y suciedad. Los tapones de plástico estándar se suministran con cada raíl. Los tapones opcionales deben pedirse por separado.

Tabla 3.108 TAPONES PARA AGUJEROS DE MONTAJE DE RAÍLES

Raíl	Tornillo		Nº artículo	Ø D (mm)	Altura H (mm)		
Kali	10111110	Plástico	Latón	Acero	g D (IIIII)	Altura II (IIIII)	
RGR15R	M4	5-001342	5-001344	-	7,5	1,1	
RGR20R	M5	5-001348	5-001350	5-001352	9,5	2,2	
RGR25R	M6	5-001353	5-001355	5-001357	11,0	2,5	
RGR30R	M8	5-001358	5-001360	5-001362	14,0	3,3	
RGR35R	M8	5-001358	5-001360	5-001362	14,0	3,3	
RGR45R	M12	5-001322	5-001324	5-001327	20,0	4,6	
RGR55R	M14	5-001328	5-001330	5-001332	23,0	5,5	
RGR65R	M16	5-001333	5-001335	5-001337	26,0	5,5	

SISTEMAS DE JUNTAS

Hay disponibles varios sistemas de juntas para los patines HIWIN. Encontrará una visión general en la página 17. La tabla siguiente muestra la longitud total de los patines con los diferentes sistemas de juntas. Hay disponibles sistemas de juntas adecuados para estos tamaños.



Tabla 3.109 LONGITUD TOTAL DE PATINES CON DIFERENTES SISTEMAS DE JUNTAS (mm)

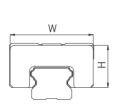
Carias / hamaña	Longitud total L									
Series / tamaño	SS	DD	ZZ	KK	SW	ZWX				
RG_15C	68,0	72,4	70,0	74,4	-	-				
RG_20C	86,0	90,4	88,0	92,4	-	-				
RG_20H	106,0	110,4	108,0	112,4	-	-				
RG_25C	97,9	102,3	99,9	104,3	-	-				
QR_25C	97,7	102,3	99,9	104,3	-	-				
RG_25H	114,4	118,8	116,4	120,8	-	-				
QR_25H	112,9	117,3	114,9	119,3	-	-				
RG_30C	109,8	114,6	112,8	117,6	-	-				
QR_30C	109,8	114,6	112,8	117,6	-	-				
RG_30H	131,8	136,6	134,8	139,6	-	-				
QR_30H	131,8	136,6	134,8	139,6	-	-				
RG_35C	124,0	129,0	127,0	132,0	-	-				
QR_35C	124,0	129,0	127,0	132,0	-	-				
RG_35H	151,5	156,5	154,5	159,5	-	-				
QR_35H	151,5	156,5	154,5	159,5	-	-				
RG_45C	153,2	160,4	156,2	163,4	156,5	166,2				
QR_45C	153,2	160,4	156,2	163,4	-	-				
RG_45H	187,0	194,2	190,0	197,2	190,3	200,0				
QR_45H	187,0	194,2	190,0	197,2	-	-				
RG_55C	183,7	190,9	186,7	193,9	186,9	198,3				
RG_55H	232,0	239,2	235,0	242,2	235,2	246,6				
RG_65C	232,0	240,8	235,0	243,8	235,2	245,3				
RG_65H	295,0	303,8	298,0	306,8	298,2	308,3				

DENOMINACIÓN DE JUEGOS DE JUNTAS

Los conjuntos de juntas se suministran siempre junto con el material de montaje, e incluyen las piezas necesarias además de la junta estándar.

FRICCIÓN

La tabla muestra la resistencia máxima de fricción de cada junta lateral. Según la configuración del sellado (SS, DD, ZZ, KK), puede ser que tenga que multiplicarse el valor. Los valores indicados se aplican a los patines sobre raíles no revestidos. Las fuerzas de fricción más potentes se producen en los raíles revestidos.


Tabla 3.110 RESISTENCIA A LA FRICCIÓN DE JUNTAS DE UN SOLO PUNTO DE CONTACTO

Series / tamaño	Fuerza de fricción (N)
RG_15	2,0
RG_20	2,5
RG/QR_25	2,8
RG/QR_30	3,3

Series / tamaño	Fuerza de fricción (N)
RG_15	2,0
RG_20	2,5
RG/QR_25	2,8
RG/QR_30	3,3

UNIDAD DE LUBRICACIÓN E2

Encontrará más información sobre la unidad de lubricación en la información general de la unidad de lubricación E2, en la página 11.

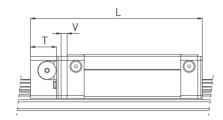


Tabla 3.111 **DIMENSIONES DEL PATÍN CON UNIDAD DE LUBRICACIÓN E2**

Modelo			D	imensiones	del patín (m	m)			Cantidad de aceite	Kilometraje ⁽²⁾	
Modelo	W	Н	T	٧	L _{SS} ⁽¹⁾	L _{zz} ⁽¹⁾	L _{DD} (1)	L _{KK} (1)	(cm³)	(km)	
RG_25C	46,8	29,2	13,5	3,5	114,9	116,9	119,3	121,3	5,0	6.000	
RG_25H	46,8	29,2	13,5	3,5	131,4	133,4	135,8	137,8	5,0	6.000	
RG_30C	58,8	34,9	13,5	3,5	126,8	129,8	131,6	134,6	7,5	8.000	
RG_30H	58,8	34,9	13,5	3,5	148,8	151,8	153,6	156,6	7,5	8.000	
RG_35C	68,8	40,3	13,5	3,5	141,0	144,0	146,0	149,0	10,7	10.000	
RG_35H	68,8	40,3	13,5	3,5	168,5	171,5	173,5	176,5	10,7	10.000	
RG_45C	83,8	50,2	16,0	4,5	173,7	176,7	180,9	183,9	18,5	20.000	
RG_45H	83,8	50,2	16,0	4,5	207,5	210,5	214,7	217,7	18,5	20.000	
RG_55C	97,6	58,4	16,0	4,5	204,2	207,2	211,4	214,4	26,5	30.000	
RG_55H	97,6	58,4	16,0	4,5	252,5	255,5	259,7	262,7	26,5	30.000	
RG_65C	121,7	76,1	16,0	4,5	252,5	255,5	261,3	264,3	50,5	40.000	
RG_65H	121,7	76,1	16,0	4,5	315,5	318,5	324,3	327,3	50,5	40.000	

¹⁾ Longitud total según la protección contra el polvo seleccionada. SS = Protección contra el polvo estándar

²⁾ Kilometraje al cual el nivel del depósito de aceite debería comprobarse a más tardar

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

Las series RG y QR están disponibles en cuatro clases de precisión según el paralelismo entre el patín y el raíl, la precisión de la altura H y la precisión de la anchura N. La elección de la clase de precisión está determinada por los requisitos de la máquina.

PARALELISMO

Paralelismo de las superficies tope D y B del patín y del raíl, y paralelismo de la parte superior del patín C en relación a la superficie de montaje A del raíl. Se requiere una instalación de guía lineal ideal, así como una medición en el centro del patín.

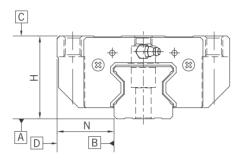


Tabla 3.112 TOLERANCIA DE PARALELISMO ENTRE PATÍN Y RAÍL (µm)

Longitud de raíl (mm)	Clase de precisión						
Longituu ue ran (mm)	Н	P	SP	UP			
- 100	7	3	2	2			
100 - 200	9	4	2	2			
200 - 300	10	5	3	2			
300 - 500	12	6	3	2			
500 - 700	13	7	4	2			
700 - 900	15	8	5	3			
900 - 1100	16	9	6	3			
1100 - 1500	18	11	7	4			
1500 - 1900	20	13	8	4			
1900 - 2500	22	15	10	5			
2500 — 3100	25	18	11	6			
3100 - 3600	27	20	14	7			
3600 – 4000	28	21	15	7			

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

PRECISIÓN - ALTO Y ANCHO

Tolerancia del alto H

Variación admisible de la dimensión absoluta de la altura H, medida entre el centro de las superficies roscadas C y la parte inferior del raíl A, con el patín en cualquier posición sobre el raíl.

Variación del alto H

Variación admisible de la altura H entre varios patines sobre un raíl, medida en la misma posición del raíl.

Tolerancia del ancho N

Variación admisible de la dimensión absoluta de la anchura N, medida entre el centro de las superficies roscadas D y B, con el patín en cualquier posición sobre el raíl.

Variación del ancho N

Variación admisible de la anchura N entre varios patines sobre un raíl, medida en la misma posición del raíl.

Tabla 3.113 TOLERANCIAS DEL ALTO Y DEL ANCHO DE MODELOS NO INTERCAMBIABLES (mm)

Series / tamaño	Clase de precisión	Tolerancia del alto de H	Tolerancia del ancho de N	Variación del alto de H	Variación del ancho de N
	H (Alta)	± 0,03	± 0,03	0,01	0,01
	D (Duradal(a)	0	0	0.000	0,006
	P (Precisión)	- 0,03	- 0,03	0,006	0,000
RG_15, 20	SP (Superprecisión)	0	0	0,004	0.004
	or (ouperprecision)	- 0,015	- 0,015	0,004	0,004
l	UP (Ultraprecisión)	0	0	0,003	0,003
	or (ortraprecision)	- 0,008	- 0,008	0,003	0,003
	H (Alta)	± 0,04	± 0,04	0,015	0,015
	D (Dunninidus)	0	0	0.007	0.007
	P (Precisión)	- 0,04	-0,04	0,007	0,007
EG_25, 30, 35 QE_25, 30, 35	SP (Superprecisión)	0	0	0,005	0,005
	or (ouperprecision)	- 0,02	- 0,02	0,005	
	UP (Ultraprecisión)	0	0	0,003	0,003
		- 0,01	- 0,01	0,003	
	H (Alta)	± 0,05	± 0,05	0,015	0,02
	P (Precisión)	0	0	0,007	0,01
	1 (Trecision)	- 0,05	- 0,05	0,007	
RG_45, 55 QR_45	SP (Superprecisión)	0	0	0,005	0,007
	or (ouperprecision)	- 0,03	- 0,03	0,003	0,007
	UP (Ultraprecisión)	0	0	0,003	0,005
	or (ortraprecision)	- 0,02	- 0,02	0,003	0,003
	H (Alta)	± 0,07	± 0,07	0,02	0,025
	P (Precisión)	0	0	0,01	0,015
	1 (Freeision)	- 0,07	- 0,07	0,01	0,010
RG_65	SP (Superprecisión)	0	0	0,007	0,01
	or (ouperprecision)	- 0,05	- 0,05	0,007	0,01
	UP (Ultraprecisión)	0	0	0,005	0,007
	Or (Oltraprooision)	- 0,03	- 0,03	0,000	0,007

Tabla 3.114 TOLERANCIAS DEL ALTO Y DEL ANCHO DE MODELOS INTERCAMBIABLES (mm)

Series / tamaño	Clase de precisión	Tolerancia del alto de H	Tolerancia del ancho de N	Variación del alto de H	Variación del ancho de N
RG 15, 20	H (Alta)	± 0,03	± 0,03	0,01	0,01
KG_15, 20	P (Precisión)	± 0,015	± 0,015	0,006	0,006
RG_25, 30, 35	H (Alta)	± 0,04	± 0,04	0,015	0,015
QR_25, 30, 35	P (Precisión)	± 0,02	± 0,02	0,007	0,007
DC 45 55 0D 45	H (Alta)	± 0,05	± 0,05	0,015	0,02
RG_45, 55 QR_45	P (Precisión)	± 0,025	± 0,025	0,007	0,01
RG 65	H (Alta)	± 0,07	± 0,07	0,02	0,025
KG_03	P (Precisión)	± 0,035	± 0,035	0,01	0,015

TOLERANCIAS SEGÚN LA CLASE DE PRECISIÓN

TOLERANCIAS ADMISIBLES DE LAS SUPERFICIES DE MONTAJE

Una vez cumplidos los requisitos relativos a la precisión de las superficies de montaje, se consiguen una buena precisión, rigidez y duración de las guías lineales de las series RG y QR.

Paralelismo de la superficie de referencia (P):

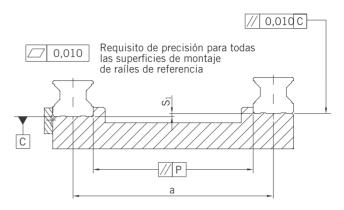


Tabla 3.115 TOLERANCIA MÁXIMA PARA EL PARALELISMO (P) (µm)

Series / tamaño	Clase de precarga				
3611637 tamano	Z0	ZA	ZB		
RG_15	5	3	3		
RG_20	8	6	4		
RG/QR_25	9	7	5		
RG/QR_30	11	8	6		
RG/QR_35	14	10	7		
RG/QR_45	17	13	9		
RG_55	21	14	11		
RG_65	27	18	14		

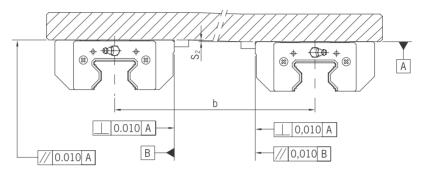
Tolerancia para la altura de la superficie de referencia (S₁)

F 3.12

 $S_1 = a \times K$

- \$₁ Tolerancia máx. de altura (mm)
- a Distancia entre raíles (mm)
- K Coeficiente de la tolerancia de la altura

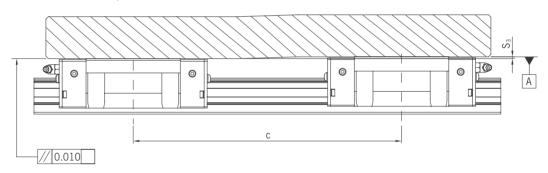
Tabla 3.116 COEFICIENTE DE TOLERANCIA DE LA ALTURA (K)


Series/tamaño	Clase de precarga				
	ZO	ZA	ZB		
RG_15 - 65/QR_25 - 45	2,2 × 10-4	1,7 × 10-4	1,2 × 10-4		

Tolerancia para la altura de la superficie de referencia (S₁)

• La tolerancia de la altura de la superficie de referencia en el uso paralelo de dos o más patines (S₂)

0.010 Requisito de precisión para todas las superficies de montaje de patines de referencia



F 3.13
$$S_2 = b \times 4.2 \times 10^{-5}$$

- \$2 Tolerancia máx. de altura (mm)
- **b** Distancia entre patines (mm)

• La tolerancia del alto de la superficie de referencia en el uso paralelo de dos o más patines (S₃)

0.010 Requisito de precisión para todas las superficies de montaje de patines de referencia

$$S_3 = C \times 4,2 \times 10^{-5}$$

- \$3 Tolerancia máx. de altura (mm)
- c Distancia entre patines (mm)

ALTO Y ENCAJE DE LA BANCADA

Las alturas imprecisas o irregulares de la superficie de montaje de la bancada, comprometen la precisión y pueden conducir a conflictos con el patín o los perfiles del raíl. Deben respetarse las siguientes alturas de bancada y perfiles de los bordes para evitar problemas de montaje.

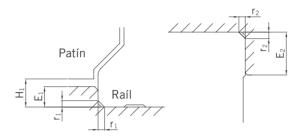
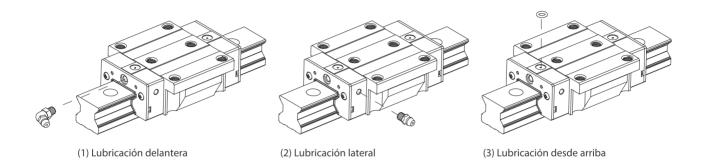


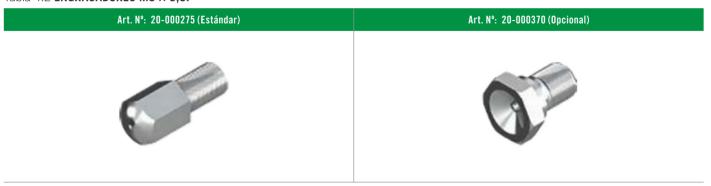
Tabla 3.117 ALTO Y ENCAJE DE LA BANCADA (mm)

Series / tamaño	Radio r ₁ máx. del borde	Radio r ₂ máx. del borde	Altura de la bancada del borde de referencia del raíl E ₁	Altura de la bancada del borde de referencia del patín E ₂	Holgura bajo el patín H ₁
RG_15	0,5	0,5	4,0	4,0	4,0
RG_20	0,5	0,5	5,0	5,0	5,0
RG/QR_25	1,0	1,0	5,0	5,0	5,5
RG/QR_30	1,0	1,0	5,0	5,0	6,0
RG/QR_35	1,0	1,0	6,0	6,0	6,5
RG/QR_45	1,0	1,0	7,0	8,0	8,0
RG_55	1,5	1,5	9,0	10,0	10,0
RG_65	1,5	1,5	10,0	10,0	12,0

ADAPTADORES DE LUBRICACIÓN

De serie hay un engrasador fijado a la parte delantera del patín (1). La conexión de lubricación en el lado opuesto está sellada por un tornillo sin cabeza. Alternativamente, la lubricación también puede llevarse a cabo a través de una de las cuatro conexiones laterales dispuestas en la unidad de recirculación (2) o desde arriba (3). Para lubricar se pueden utilizar engrasadores, adaptadores de lubricación o conectores de presión.




Tabla 4.1 VISIÓN GENERAL DEL TIPO DE PATÍN / TAMAÑO DE ROSCA

Tipo de patín	Tamaño de rosca delantero /l ateral
HG_15	M4
HG_20, HG_25, HG_30, HG_35	M6×0,75
HG_45, HG_55, HG_65	1/8 PT
QH_15	M4
QH_20, QH_25, QH_30, QH_35	M6 × 0,75
QH_45	1/8 PT
EG_15	M4
EG_20, EG_25, EG_30, EG_35	M6 × 0,75
QE_15	M4
QE_20, QE_25, QE_30, QE_35	M6 × 0,75
WE_17	M3
WE_21, WE_27, WE_35	M6×0,75
WE_50	1/8 PT
MG_15	M3
RG_15, RG_20	M4
RG_25, RG_30, RG_35	M6×0,75
RG_45, RG_55, RG_65	1/8 PT
QR_25, QR_30, QR_35	M6×0,75
QR_45	1/8 PT

ENGRASADORES Y ACCESORIOS DE LUBRICACIÓN

Tabla 4.2 ENGRASADORES M3 × 0,5P

Los números de artículo mencionados se aplican a la protección contra el polvo estándar. Números de artículo para protección contra el polvo opcional disponibles a petición.

ENGRASADORES Y ACCESORIOS DE LUBRICACIÓN

Tabla 4.4 **Engrasadores y accesorios de Lubricación m6 × 0,75P**

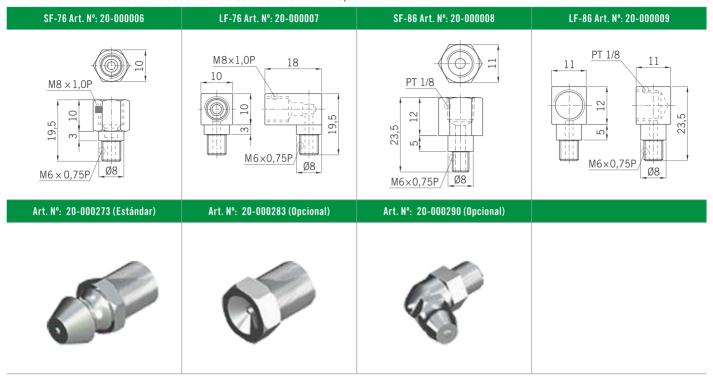
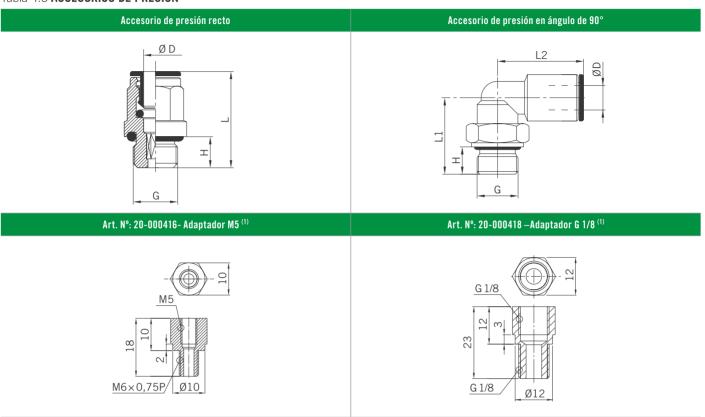


Tabla 4.5 ENGRASADORES Y ACCESORIOS DE LUBRICACIÓN 1/8 PT


SF-78 Art. N°: 20-000010	LF-78 Art. N°: 20-000011	SF-88 Art. N°: 20-000012	LF-88 Art. N°: 20-000013
M8×1,0P	M8×1,0P 18 10 02 PT1/8 Ø10	PT1/8 PT1/8 Ø11 PT1/8	12 PT 1/8 12 PT 1/8 PT 1/8 Ø10
Art. N°: 20-000280 (Opcional)	Art. Nº: 20-000292 (Estándar)		

Los números de artículo mencionados se aplican a la protección contra el polvo estándar. Números de artículo para protección contra el polvo opcional disponibles a petición.

ACCESORIOS DE PRESIÓN

Tabla 4.6 ACCESORIOS DE PRESIÓN

¹⁾ Los adaptadores mostrados se requieren para accesorios de presión con roscas M5 o G 1/8. Los accesorios de presión con rosca M6 se atornillan al patín sin adaptador.

Tabla 4.7 **DIMENSIONES DE ACCESORIOS DE PRESIÓN**

Artículo nº	G	ØD	Forma	н	L	L1	L2
20-000439	M5 × 0,8	4	Recto	4	20,5	-	-
20-000462	M5 × 0,8	6	Recto	4	22,5	-	-
20-000465	M5 × 0,8	4	En ángulo	4	-	14,5	18
20-000466	M5 × 0,8	6	En ángulo	4	-	14,5	21
8-12-0127	M6 × 0,75	4	Recto	5	23,5	-	-
20-000463	M6 × 0,75	6	Recto	4	22,5	-	-
8-12-0128	M6 × 0,75	4	En ángulo	5	-	15,5	18
8-12-0138	M6 × 0,75	6	En ángulo	5	-	15,5	21
8-12-0131	G 1/8	4	Recto	6	20,0	-	_
8-12-0136	G 1/8	6	Recto	6	24,0	-	-
8-12-0130	G 1/8	4	En ángulo	6	-	20,0	20
8-12-0137	G 1/8	6	En ángulo	6	-	20,0	21

Los números de artículo mencionados se aplican a la protección contra el polvo estándar. Números de artículo para protección contra el polvo opcional disponibles a petición.

ACCESORIOS. INYECTORES DE ENGRASE Y LUBRICANTES

Tabla 4.8 INYECTORES DE ENGRASE HIWIN

Artículo nº	Inyector de engrase	Adaptador de lubricación y juego de boquillas	Llenado directo	Cartucho
20-000352	•	-	•	70 g
20-000332	•	•	•	70 g
20-000353	•	-	•	400 g
20-000333	•	•	•	400 g
20-000358	-	•	-	-

Tabla 4.9 **GRASAS HIWIN**

Tipo de grasa	Campo de aplicación	Artículo nº				
Tipo de grasa	Campo de apricación	Cartucho 70 g	Cartucho 400 g	Envase 1 kg		
G01	Aplicaciones de trabajos pesados	20-000335	20-000336	20-000337		
G02	Aplicaciones de sala limpia	20-000338	20-000339	20-000340		
G03	Aplicaciones de sala limpia, alta velocidad	20-000341	20-000342	20-000343		
G04	Alta velocidad	20-000344	20-000345	20-000346		
G05	Grasa estándar	20-000347	20-000348	20-000349		

Tabla 4.10 **ACEITES HIWIN**

Artículo nº	Inyector de engrase	Adaptador de lubricación y juego de boquillas	Cartucho
Artículo nº	Descripción	Alcance de entrega	Observación
20-000350	SHC 636	Botella de 1 litro	Aceite para llenar depósito de lubricación E2

ATENCIÓN PROFESIONAL PERSONALIZADA

Rua Ademar Martinello nº 8-65 Distrito 2 BAURU/São Paulo - Brasil CEP: 17039-730 Fone: +55 (14) 4009-0507 vendasbr@mectrol.com.br

www.mectrol.com.br

HIWIN - Global - Subsidiaries & R&D Centers

HIWIN TECHNOLOGIESGLOBAL HEADQUARTERS TAICHUNG, TAIWAN - www.hiwin.tw

HIWIN MIKROSYSTEMGLOBAL HEADQUARTERS TAICHUNG, TAIWAN - www.hiwinmikro.com.tw

